E·XFL

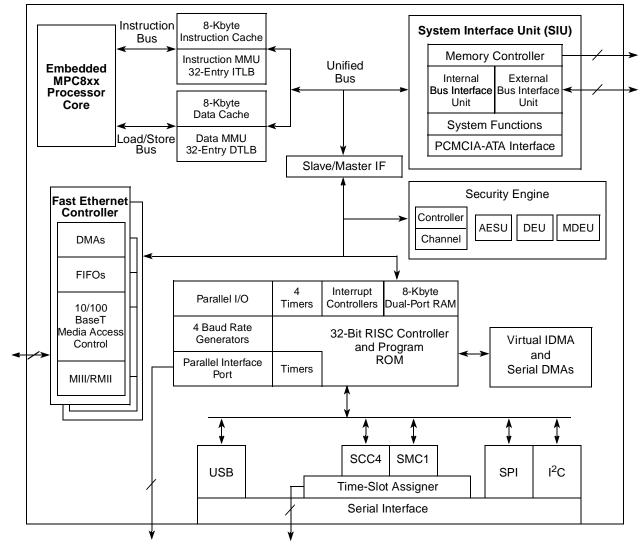
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

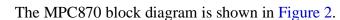
Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc870vr66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



The MPC875 block diagram is shown in Figure 1.

Figure 1. MPC875 Block Diagram

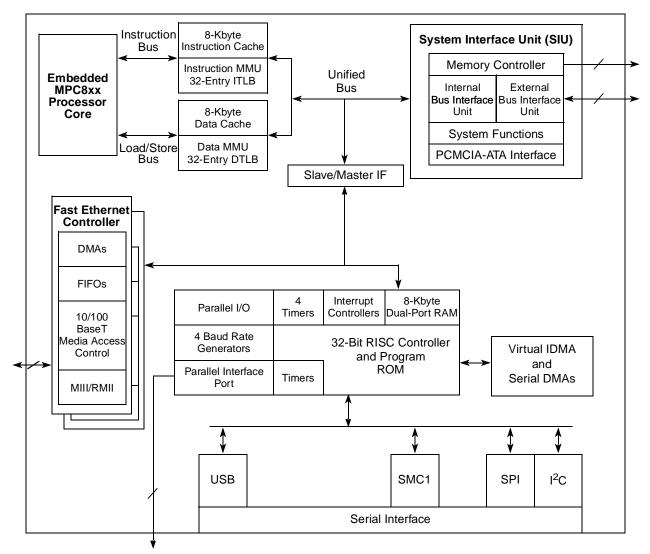


Figure 2. MPC870 Block Diagram

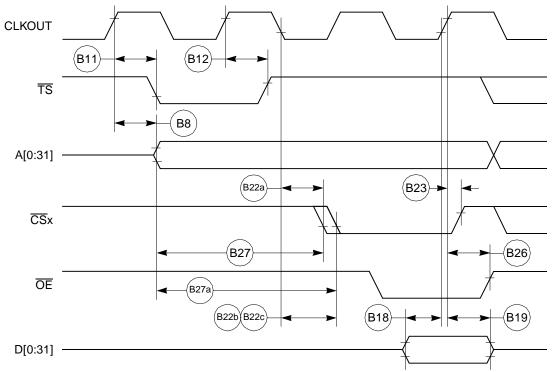
MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Num	Characteristic		33 MHz		MHz	66 I	MHz	80 MHz		Unit
NUM			Max	Min	Мах	Min	Max	Min	Мах	Unit
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)/BS_B[0:3]$ asserted (MAX = 0.00 × B1 + 9.00)		9.00		9.00		9.00	—	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 × B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 × B1 - 2.00)	35.90	_	29.30		16.90	_	13.60		ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 × B1 – 2.00)	43.50	_	35.50		20.70	_	16.75		ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access CSNT = 0 (MAX = 0.00 × B1 + 9.00)		9.00		9.00	_	9.00		9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	9.93	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	_	14.30	_	13.00	_	10.50	_	9.93	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	18.00	5.20	12.30	4.69	11.29	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	_	18.00	_	18.00	_	12.30	_	11.30	ns
B29	$eq:weighted_$	5.60	_	4.30	—	1.80	_	1.13	_	ns
B29a	$\label{eq:weighted_states} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31) \mbox{ High-Z} \\ GPCM \mbox{ write access, } TRLX = 0, \mbox{ CSNT = 1,} \\ EBDF = 0 \mbox{ (MIN = } 0.50 \times B1 - 2.00) \\ \hline \hline \end{array}$	13.20	—	10.50	—	5.60	—	4.25	_	ns
B29b	\overline{CS} negated to D(0:31) High-Z GPCM write access, ACS = 00, TRLX = 0 and CSNT = 0 (MIN = 0.25 × B1 - 2.00)	5.60		4.30		1.80		1.13		ns
B29c	\overline{CS} negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MIN = 0.50 × B1 - 2.00)	13.20	_	10.50		5.60	_	4.25	—	ns

Table 10. Bus Operation Timings (continued)

		33 MHz		40 MHz		66 MHz		80 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B29d	$\label{eq:weight} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31) \mbox{ High-Z} \\ GPCM \mbox{ write access, } TRLX = 1, \mbox{ CSNT} = 1, \\ EBDF = 0 \mbox{ (MIN} = 1.50 \times B1 - 2.00) \\ \hline \hline \end{tabular}$	43.50		35.50		20.70		16.75		ns
B29e	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MIN = 1.50 × B1 - 2.00)	43.50	_	35.50		20.70	_	16.75	_	ns
B29f	$\label{eq:weighted_states} \hline \hline WE(0:3/BS_B[0:3]) \ \text{negated to } D(0:31) \ \text{High-Z} \\ \text{GPCM write access, } TRLX = 0, \ \text{CSNT} = 1, \\ \text{EBDF} = 1 \ (\text{MIN} = 0.375 \times \text{B1} - 6.30)^7 \\ \hline \hline \end{array}$	5.00		3.00		0.00		0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 6.30) ⁷	5.00	_	3.00	_	0.00	_	0.00	_	ns
B29h	$\label{eq:weighted} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31) \mbox{ High-Z} \\ GPCM \mbox{ write access, } TRLX = 1, \mbox{ CSNT = 1,} \\ EBDF = 1 \mbox{ (MIN = } 0.375 \times B1 - 3.30) \\ \hline \hline \end{tabular}$	38.40	_	31.10	_	17.50	_	13.85	_	ns
B29i	$\frac{\overline{\text{CS}} \text{ negated to D(0:31) (0:3) High-Z GPCM}}{\text{write access, TRLX = 1, CSNT = 1, ACS = 10}}$ or ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 3.30)	38.40	_	31.10	_	17.50	_	13.85	_	ns
B30	\overline{CS} , \overline{WE} (0:3)/BS_B[0:3] negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁸ (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30		1.80	_	1.13	_	ns
B30a	$\label{eq:weighted_states} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } A(0:31), \\ BADDR(28:30) \mbox{ invalid GPCM, write access,} \\ TRLX = 0, \mbox{ CSNT = 1, } \hline CS \mbox{ negated to } A(0:31), \\ \mbox{ invalid GPCM write access } TRLX = 0, \\ CSNT = 1, \mbox{ ACS = 10 or } ACS == 11, \mbox{ EBDF = 0} \\ (MIN = 0.50 \times B1 - 2.00) \\ \hline \hline \hline \hline \end{tabular}$	13.20	_	10.50		5.60	_	4.25	_	ns
B30b	$eq:weighted_$	43.50	_	35.50		20.70	_	16.75	_	ns
B30c	$eq:weighted_$	8.40	_	6.40	_	2.70	_	1.70	_	ns

Table 10. Bus Operation Timings (continued)



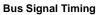

Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Figure 16 through Figure 18 provide the timing for the external bus write controlled by various GPCM factors.


```
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)
```




Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

1

Table 11 provides the interrupt timing for the MPC875/MPC870.

Table 11. Interrupt Timing	
----------------------------	--

Num	Characteristic ¹	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4 × T _{CLOCKOUT}		_

The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC875/MPC870 is able to support.

Figure 25 provides the interrupt detection timing for the external level-sensitive lines.

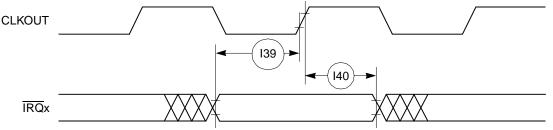


Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.

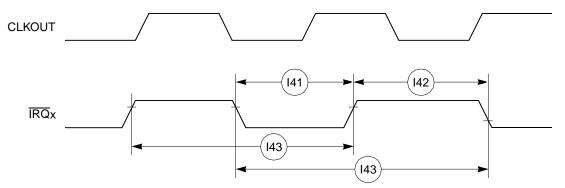
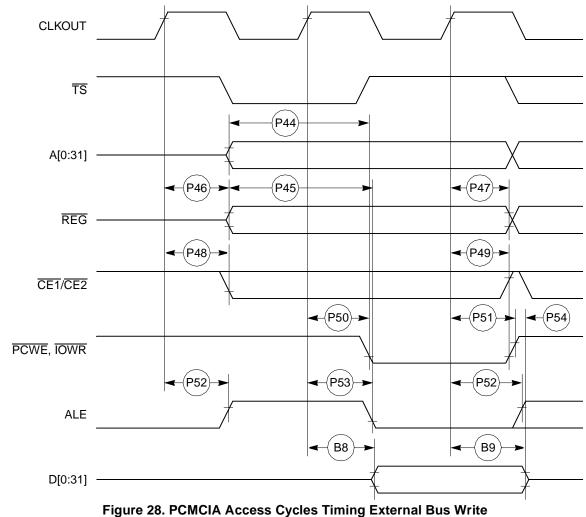


Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines

Table 12 shows the PCMCIA timing for the MPC875/MPC870.

Table 12. PCMCIA Timing

Num	Characteristic	33 MHz		40 1	MHz	66 MHz		80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA strobe asserted ¹ (MIN = 0.75 × B1 - 2.00)	20.70		16.70	_	9.40		7.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹ (MIN = 1.00 × B1 - 2.00)	28.30	_	23.00		13.20		10.50	_	ns
P46	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P47	CLKOUT to $\overline{\text{REG}}$ invalid (MIN = 0.25 × B1 + 1.00)	8.60		7.30	_	4.80	_	4.125	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P50	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} assert time (MAX = $0.00 \times B1 + 11.00$)	—	11.00	—	11.00	—	11.00	—	11.00	ns
P51	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} negate time (MAX = 0.00 × B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time $(MAX = 0.25 \times B1 + 6.30)$	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.40	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 × B1 + 8.00)	_	15.60	—	14.30	—	11.80	—	11.13	ns
P54	$\frac{\overline{PCWE}, \overline{IOWR} \text{ negated to } D(0:31)}{invalid^1 (MIN = 0.25 \times B1 - 2.00)}$	5.60	_	4.30	—	1.80		1.125	—	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge ¹ (MIN = 0.00 × B1 + 8.00)	8.00		8.00	_	8.00	_	8.00	—	ns
P56	CLKOUT rising edge to \overline{WAITA} and \overline{WAITB} invalid ¹ (MIN = 0.00 × B1 + 2.00)	2.00	_	2.00	—	2.00	—	2.00	—	ns


¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAITA signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITA assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16, "PCMCIA Interface," in the MPC885 PowerQUICC[™] Family Reference Manual.

Figure 28 provides the PCMCIA access cycle timing for the external bus write.

ngure 20. i olinoira Addess Oydres finning External Ba

Figure 29 provides the PCMCIA \overline{WAIT} signals detection timing.

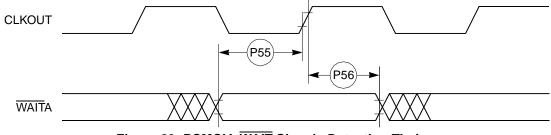
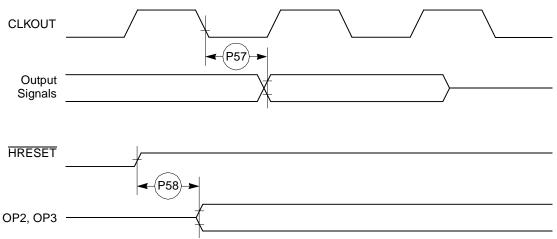


Figure 29. PCMCIA WAIT Signals Detection Timing


Table 13 shows the PCMCIA port timing for the MPC875/MPC870.

33 MHz 40 MHz 66 MHz 80 MHz Num Characteristic Unit Min Max Min Max Min Max Min Max CLKOUT to OPx valid 19.00 19.00 19.00 19.00 ____ ____ ____ ns P57 $(MAX = 0.00 \times B1 + 19.00)$ HRESET negated to OPx drive¹ 25.70 21.70 14.40 12.40 ns ____ ____ ____ ____ P58 $(MIN = 0.75 \times B1 + 3.00)$ IP_Xx valid to CLKOUT rising edge 5.00 5.00 5.00 5.00 ____ ____ ns P59 $(MIN = 0.00 \times B1 + 5.00)$ CLKOUT rising edge to IP_Xx invalid 1.00 1.00 1.00 1.00 ns ____ P60 $(MIN = 0.00 \times B1 + 1.00)$

Table 13. PCMCIA Port Timing

OP2 and OP3 only.

Figure 30 provides the PCMCIA output port timing for the MPC875/MPC870.

Figure 30. PCMCIA Output Port Timing

Figure 31 provides the PCMCIA input port timing for the MPC875/MPC870.

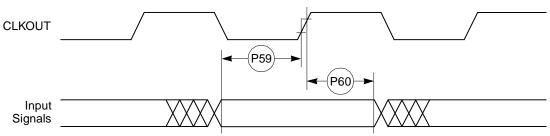


Figure 31. PCMCIA Input Port Timing

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Table 15 shows the reset timing for the MPC875/MPC870.

Table 15. Reset Timing

Nissia	Okenesterietie	33 MHz		40 MHz		66 MHz		80 MHz		Unit
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	-	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	—	257.60	—	212.50	_	ns
R72	_	—	_	—	_	—		_	_	—
R73	Configuration data to $\overline{\text{HRESET}}$ rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	_	350.00	_	350.00		ns
R75	Configuration data hold time after $\overrightarrow{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00		0.00		0.00	_	ns
R76	Configuration data hold time after HRESET negation (MIN = $0.00 \times B1 + 0.00$)	0.00		0.00	_	0.00		0.00		ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = $0.00 \times B1 + 25.00$)	—	25.00	—	25.00	_	25.00	_	25.00	ns
R78	$\frac{RSTCONF}{Impedance} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00	—	45.50	_	37.50	_	ns
R81	DSDI, DSCK hold time (MIN = $0.00 \times B1 + 0.00$)	0.00		0.00	_	0.00		0.00	_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = $8.00 \times B1$)	242.40	—	200.00	—	121.20	—	100.00	—	ns

CPM Electrical Characteristics

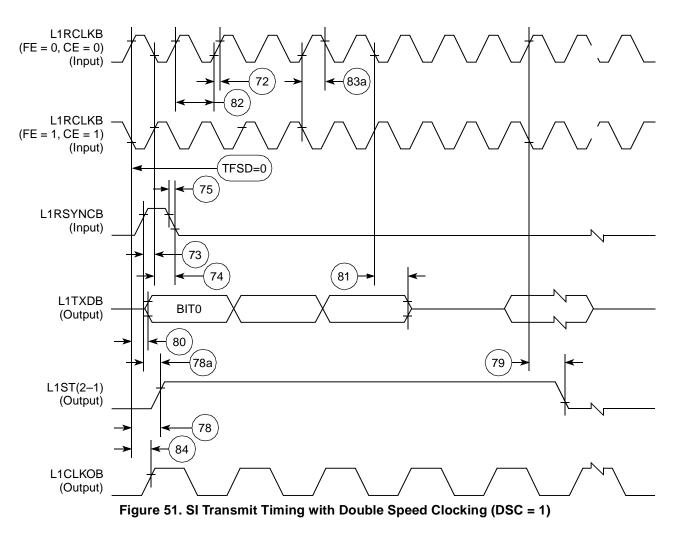


Table 36 contains a list of the MPC875/MPC870 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	R16, N14, M14, P15, P17, P16, N15, N16, M15, N17, L14, M16, L15, M17, K14, L16, L17, K17, G17, K15, J16, J15, G16, J14, H17, H16, G15, K16, H14, J17, H15, F17	Bidirectional Three-state (3.3 V only)
TSIZO, REG	F16	Bidirectional Three-state (3.3 V only)
TSIZ1	G14	Bidirectional Three-state (3.3 V only)
RD/WR	D13	Bidirectional Three-state (3.3 V only)
BURST	B9	Bidirectional Three-state (3.3 V only)
BDIP, GPL_B5	C13	Output
TS	C11	Bidirectional Active pull-up (3.3 V only)
TA	C12	Bidirectional Active pull-up (3.3 V only)
TEA	B12	Open-drain
BI	B13	Bidirectional Active pull-up (3.3 V only)
IRQ2, RSV	C9	Bidirectional Three-state (3.3 V only)
IRQ4, KR, RETRY, SPKROUT	E9	Bidirectional Three-state (3.3 V only)
D[0:31]	L5, N3, L3, L2, R2, K2, H3, G2, R3, M3, N2, M2, M4, N4, K5, K3, K4, P3, J2, J3, J4, J5, H2, P2, H4, H5, G5, L4, G3, F2, F3, E2	Bidirectional Three-state (3.3 V only)
CR, IRQ3	E10	Input
FRZ, IRQ6	B10	Bidirectional Three-state (3.3 V only)
BR	B11	Bidirectional (3.3 V only)
BG	D10	Bidirectional (3.3 V only)
BB	C10	Bidirectional Active pull-up (3.3 V only)
ĪRQ0	M6	Input (3.3 V only)
ĪRQ1	P5	Input (3.3 V only)
ĪRQ7	N5	Input (3.3 V only)
<u>CS</u> [0:5]	B14, E11, C14, B15, E13, B16	Output

Table 36. Pin Assignments—JEDEC Standard

Name	Pin Number	Туре
PE29, MII2-CRS	U7	Bidirectional (Optional: open-drain)
PE28, TOUT3, MII2-COL	R7	Bidirectional (Optional: open-drain)
PE27, L1RQB, MII2-RXERR, RMII2-RXERR	Т6	Bidirectional (Optional: open-drain)
PE26, L1CLKOB, MII2-RXDV, RMII2-CRS_DV	T2	Bidirectional (Optional: open-drain)
PE25, RXD4, MII2-RXD3, L1ST2	R4	Bidirectional (Optional: open-drain)
PE24, SMRXD1, BRGO1, MII2-RXD2	U8	Bidirectional (Optional: open-drain)
PE23, TXD4, MII2-RXCLK, L1ST1	U4	Bidirectional (Optional: open-drain)
PE22, TOUT2, MII2-RXD1, RMII2-RXD1, SDACK1	P4	Bidirectional (Optional: open-drain)
PE21, TOUT1, MII2-RXD0, RMII2-RXD0	Т9	Bidirectional (Optional: open-drain)
PE20, MII2-TXER	U3	Bidirectional (Optional: open-drain)
PE19, L1TXDB, MII2-TXEN, RMII2-TXEN	R6	Bidirectional (Optional: open-drain)
PE18, SMTXD1, MII2-TXD3	M5	Bidirectional (Optional: open-drain)
PE17, TIN3, CLK5, BRGO3, SMSYN1, MII2-TXD2	Т8	Bidirectional (Optional: open-drain)
PE16, L1RCLKB, CLK6, MII2-TXCLK, RMII2-REFCLK	U6	Bidirectional (Optional: open-drain)
PE15, TGATE1, MII2-TXD1, RMII2-TXD1	Т7	Bidirectional
PE14, MII2-TXD0, RMII2-TXD0	P8	Bidirectional
TMS	T14	Input (5-V tolerant)
TDI, DSDI	T13	Input (5-V tolerant)
TCK, DSCK	R13	Input (5-V tolerant)
TRST	U14	Input (5-V tolerant)

Table 36. Pin Assignments—JEDEC Standard (continued)

Name	Pin Number	Туре
TDO, DSDO	P13	Output (5-V tolerant)
MII1_CRS	U10	Input
MII_MDIO	M13	Bidirectional (5-V tolerant)
MII1_TX_EN, RMII1_TX_EN	U5	Output (5-V tolerant)
MII1_COL	R10	Input
V _{SSSYN}	E5	PLL analog GND
V _{SSSYN1}	F6	PLL analog GND
V _{DDSYN}	E6	PLL analog V _{DD}
GND	H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10, L11, U15	Power
V _{DDL}	F7, F8, F9, F10, F11, H6, H13, J6, J13, K6, K13, L6, L13, N7, N8, N9, N10, N11	Power
V _{DDH}	G7, G8, G9, G10, G11, G12, H7, H12, J7, J12, K7, K12, L7, L12, M7, M8, M9, M10, M11, M12	Power
N/C	B17, T16, U2, U17	No connect

Table 36. Pin Assignments—JEDEC Standard (continued)

16.2 Mechanical Dimensions of the PBGA Package

Figure 70 shows the mechanical dimensions of the PBGA package.

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
- 4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- **Note:** Solder sphere composition is 95.5%Sn 45%Ag 0.5%Cu for MPC875/MPC870VRXXX. Solder sphere composition is 62%Sn 36%Pb 2%Ag for MPC875/MPC870ZTXXX.

Figure 70. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Document Revision History

17 Document Revision History

Table 37 lists significant changes between revisions of this hardware specification.

Table 37. Document Revision History

Revision Number	Date	Changes
0	2/2003	Initial release.
0.1	3/2003	Took out the time-slot assigner and changed the SCC for SCC3 to SCC4.
0.2	5/2003	Changed the package drawing, removed all references to Data Parity. Changed the SPI Master Timing Specs. 162 and 164. Added the RMII and USB timing. Added the 80-MHz timing.
0.3	5/2003	Made sure the pin types were correct. Changed the Features list to agree with the MPC885.
0.4	5/2003	Corrected the signals that had overlines on them. Made corrections on two pins that were typos.
0.5	5/2003	Changed the pin descriptions for PD8 and PD9.
0.6	5/2003	Changed a few typos. Put back the I ² C. Put in the new reset configuration, corrected the USB timing.
0.7	6/2003	Changed the pin descriptions per the June 22 spec, removed Utopia from the pin descriptions, changed PADIR, PBDIR, PCDIR and PDDIR to be 0 in the Mandatory Reset Config.
0.8	8/2003	Added the reference to USB 2.0 to the Features list and removed 1.1 from USB on the block diagrams.
0.9	8/2003	Changed the USB description to full-/low-speed compatible.
1.0	9/2003	Added the DSP information in the Features list. Put a new sentence under Mechanical Dimensions. Fixed table formatting. Nontechnical edits. Released to the external web.
1.1	10/2003	Added TDMb to the MPC875 Features list, the MPC875 Block Diagram, added 13.5 Serial Interface AC Electrical Specifications, and removed TDMa from the pin descriptions.
2.0	12/2003	Changed DBGC in the Mandatory Reset Configuration to X1. Changed the maximum operating frequency to 133 MHz. Put the timing in the 80 MHz column. Put in the orderable part numbers. Rounded the timings to hundredths in the 80 MHz column. Put the pin numbers in footnotes by the maximum currents in Table 6. Changed 22 and 41 in the Timing. Put TBD in the Thermal table.

MPC875/MPC870 PowerQUICC[™] Hardware Specifications, Rev. 4

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 802.3, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2003-2007. All rights reserved.

Document Number: MPC875EC Rev. 4 08/2007

