E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc870zt133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- ECB, CBC, and counter modes
- 128-, 192-, and 256-bit key lengths
- Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Master/slave logic, with DMA
 - 32-bit address/32-bit data
 - Operation at MPC8xx bus frequency
- Crypto-channel supporting multi-command descriptors
 - Integrated controller managing crypto-execution units
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Interrupts
 - Six external interrupt request (IRQ) lines
 - Twelve port pins with interrupt capability
 - Twenty-three internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - 8-Kbytes of dual-port RAM
 - Several serial DMA (SDMA) channels to support the CPM
 - Three parallel I/O registers with open-drain capability
- On-chip 16×16 multiply accumulate controller (MAC)
 - One operation per clock (two-clock latency, one-clock blockage)
 - MAC operates concurrently with other instructions
 - FIR loop—Four clocks per four multiplies
- Four baud-rate generators
 - Independent (can be connected to SCC or SMC)
 - Allows changes during operation
 - Autobaud support option
- SCC (serial communication controller)
 - Ethernet/IEEE 802.3® standard, supporting full 10-Mbps operation
 - HDLC/SDLC

Thermal Calculation and Measurement

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature. If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{\rm J} = T_{\rm B} + (R_{\rm \theta JB} \times P_{\rm D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature (°C)$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

11 Bus Signal Timing

The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.

Part Frequency		MHz	80 MHz		
		Мах	Min	Мах	
Core frequency	40	66.67	40	80	
Bus frequency	40	66.67	40	80	

Table 8. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 9. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Frequency	66 MHz		80 MHz		133 MHz	
		Max	Min	Мах	Min	Max
Core frequency	40	66.67	40	80	40	133
Bus frequency	20	33.33	20	40	20	66

Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.

The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay

Table 10. Bus Operation Timings

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		Unit
Num	Characteristic	Min	Мах	Min	Max	Min	Max	Min	Max	Omt
B1	Bus period (CLKOUT), see Table 8	_	—	—	—	_		—	—	ns
B1a	EXTCLK to CLKOUT phase skew—If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1		1	_	1	ns
B1c	Frequency jitter on EXTCLK	_	0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \ge 15 MHz		4	—	4		4	—	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz		5		5		5		5	ns

Nivues	Characteristic	33 MHz		40	40 MHz		MHz	80 MHz		Unit
Num		Min	Max	Min	Мах	Min	Max	Min	Мах	Unit
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 × B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 6.00)	6.00		6.00	_	6.00	_	6	_	ns
B16a	TEA, $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 4.5)	4.50	_	4.50	—	4.50	—	4.50	—	ns
B16b	\overline{BB} , \overline{BG} , \overline{BR} , valid to CLKOUT (setup time) ² (4MIN = 0.00 × B1 + 0.00)	4.00	—	4.00	—	4.00	—	4.00	—	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = 0.00 × B1 + 1.00 ³)	1.00	—	1.00	—	2.00	—	2.00	—	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	—	2.00	—	2.00	—	ns
B18	D(0:31) valid to CLKOUT rising edge (setup time) ⁴ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	—	6.00	—	6.00	—	ns
B19	CLKOUT rising edge to D(0:31) valid (hold time) ⁴ (MIN = $0.00 \times B1 + 1.00^5$)	1.00		1.00	_	2.00	_	2.00	—	ns
B20	D(0:31) valid to CLKOUT falling edge (setup time) ⁶ (MIN = $0.00 \times B1 + 4.00$)	4.00	_	4.00	—	4.00	_	4.00	—	ns
B21	CLKOUT falling edge to D(0:31) valid (hold time) ⁶ (MIN = $0.00 \times B1 + 2.00$)	2.00	_	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 × B1 + 8.00)	_	8.00	—	8.00		8.00	—	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	5.20	12.30	4.69	10.93	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 and CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = $0.25 \times B1 - 2.00$)	5.60	_	4.30	—	1.80	—	1.13	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 × B1 - 2.00)	13.20		10.50	—	5.60	—	4.25	—	ns

Table 10. Bus Operation Timings (continued)

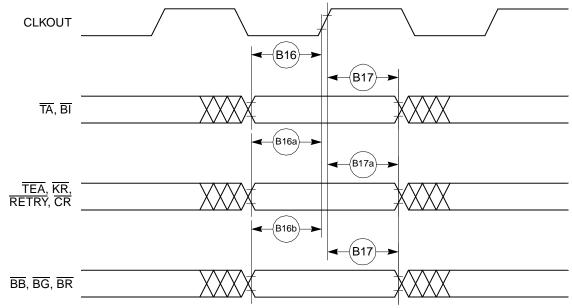


Figure 9 provides the timing for the synchronous input signals.

Figure 10 provides normal case timing for input data. It also applies to normal read accesses under the control of the user-programmable machine (UPM) in the memory controller.

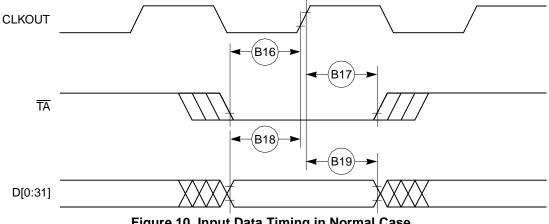


Figure 10. Input Data Timing in Normal Case

Bus Signal Timing

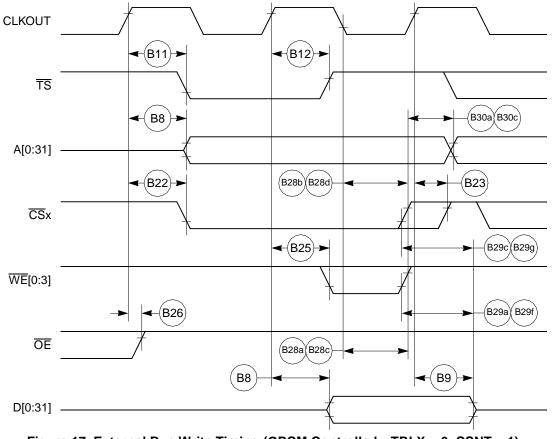


Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

1

Table 11 provides the interrupt timing for the MPC875/MPC870.

Table 11. Interrupt Timing	
----------------------------	--

Num	Characteristic ¹	All Freq	Unit	
	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4 × T _{CLOCKOUT}		—

The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC875/MPC870 is able to support.

Figure 25 provides the interrupt detection timing for the external level-sensitive lines.

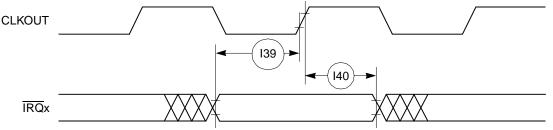


Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.

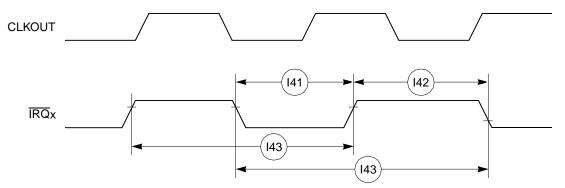


Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines

Bus Signal Timing

Figure 34 shows the reset timing for the data bus configuration.

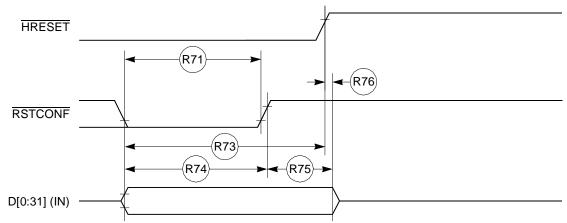


Figure 35 provides the reset timing for the data bus weak drive during configuration.

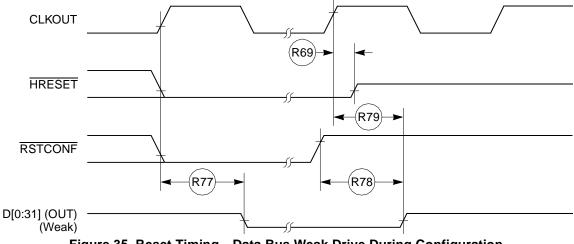
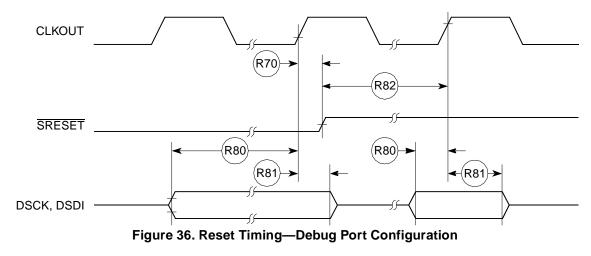



Figure 36 provides the reset timing for the debug port configuration.

IEEE 1149.1 Electrical Specifications

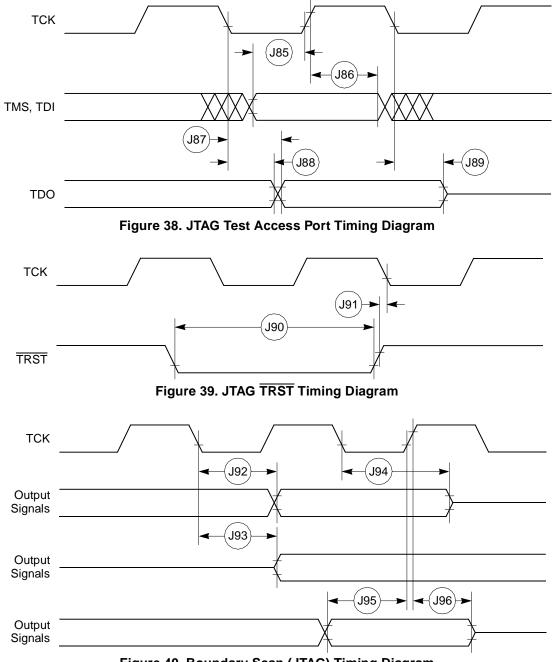


Figure 40. Boundary Scan (JTAG) Timing Diagram

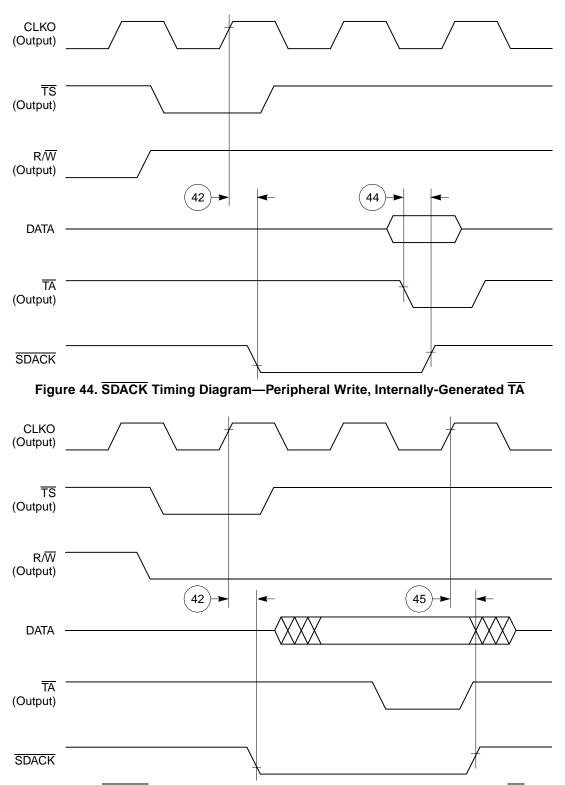


Figure 45. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

13.3 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 46.

Table 19. Baud Rate Generator Timing

Num	Characteristic	All Freq	Unit	
Num		Min	Мах	Unit
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

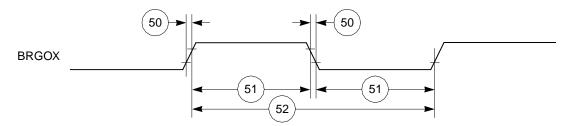


Figure 46. Baud Rate Generator Timing Diagram

13.4 Timer AC Electrical Specifications

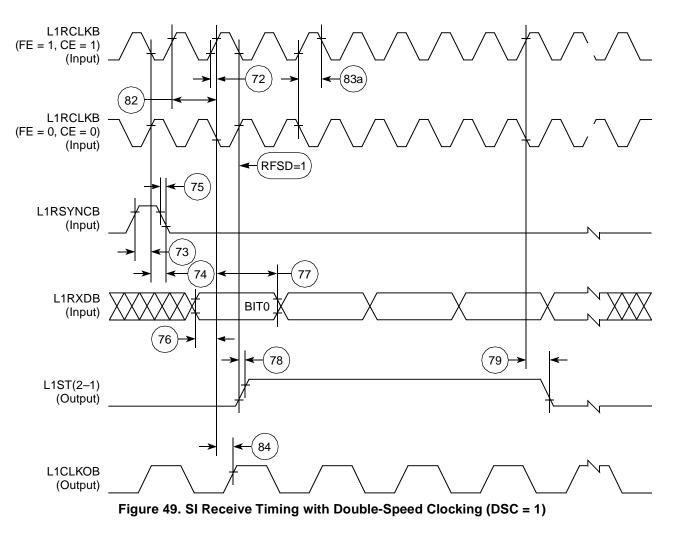
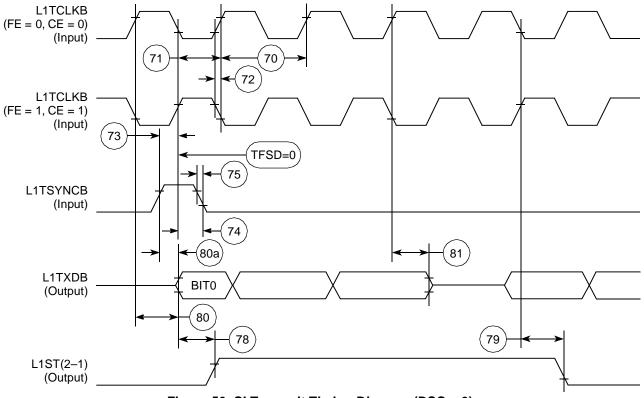
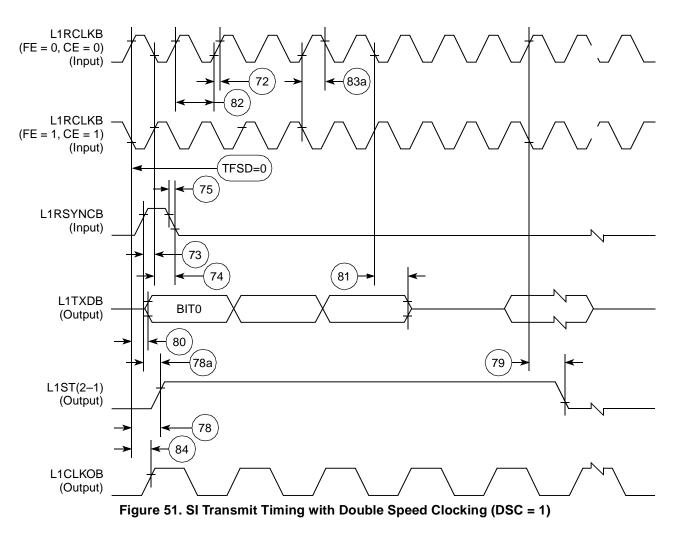

Table 20 provides the general-purpose timer timings as shown in Figure 47.

Table	20.	Timer	Timing
-------	-----	-------	--------


Num	Characteristic	All Freq	Unit	
Num	Gilardetensite		Мах	Onit
61	TIN/TGATE rise and fall time	10	_	ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	—	clk
65	CLKO low to TOUT valid	3	25	ns

CPM Electrical Characteristics



CPM Electrical Characteristics

Num	Characteristic		All Frequencies		
Num			Мах	Unit	
138	CLKO1 low to SDACK asserted ²	_	20	ns	
139	CLKO1 low to SDACK negated ²	_	20	ns	

Table 24. Ethernet Timing (continued)

¹ The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

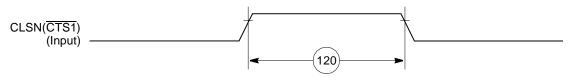


Figure 56. Ethernet Collision Timing Diagram

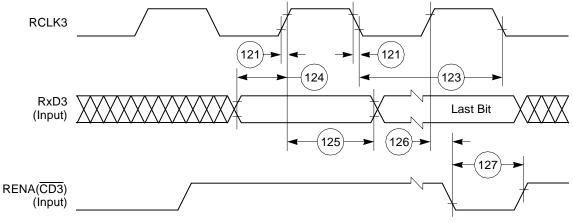


Figure 57. Ethernet Receive Timing Diagram

14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 30 lists the USB interface timings.

Table 30. USB Interface AC Timing Specifications

Name	Characteristic		All Frequencies		
Name			Max	Unit	
US1	USBCLK frequency of operation ¹ Low speed Full speed	6	6 8	MHz	
US4	USBCLK duty cycle (measured at 1.5 V)	45	55	%	

¹ USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

15 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%.

Table 31 provides information on the MII receive signal timing.

Num	Characteristic	Min	Мах	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period
M1_RMII	RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup	4	_	ns
M2_RMII	RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold	2		ns

Table 31. MII Receive Signal Timing

Figure 65 shows MII receive signal timing.

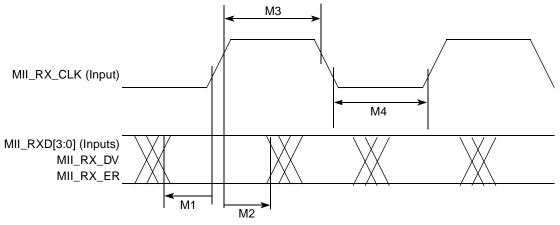


Figure 65. MII Receive Signal Timing Diagram

15.2 MII and Reduced MII Transmit Signal Timing

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency -1%.

Table 32 provides information on the MII transmit signal timing.

Table 32. M	III Transmit	Signal Timing
-------------	--------------	---------------

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid		25	ns
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period
M20_RMII	RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup	4	_	ns
M21_RMII	RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising edge	2	_	ns

Name	Pin Number	Туре	
PB30, SPICLK	T17	Bidirectional (Optional: open-drain) (5-V tolerant)	
PB29, SPIMOSI	R17	Bidirectional (Optional: open-drain) (5-V tolerant)	
PB28, SPIMISO, BRGO4	R14	Bidirectional (Optional: open-drain) (5-V tolerant)	
PB27, I2CSDA, BRGO1	N13	Bidirectional (Optional: open-drain)	
PB26, I2CSCL, BRGO2	N12	Bidirectional (Optional: open-drain)	
PB25, SMTXD1	U13	Bidirectional (Optional: open-drain) (5-V tolerant)	
PB24, SMRXD1	T12	Bidirectional (Optional: open-drain) (5-V tolerant)	
PB23, SDACK1, SMSYN1	U12	Bidirectional (Optional: open-drain)	
PB19, MII1-RXD3, RTS4	T11	Bidirectional (Optional: open-drain)	
PC15, DREQ0, L1ST1	R15	Bidirectional (5-V tolerant)	
PC13, MII1-TXD3, SDACK1	U9	Bidirectional (5-V tolerant)	
PC12, MII1-TXD2, TOUT1	T15	Bidirectional (5-V tolerant)	
PC11, USBRXP	P12	Bidirectional	
PC10, USBRXN, TGATE1	U11	Bidirectional	
PC7, <u>CTS4</u> , L1TSYNCB, USBTXP	T10	Bidirectional (5-V tolerant)	
PC6, CD4 , L1RSYNCB, USBTXN	P10	Bidirectional (5-V tolerant)	
PD8, RXD4, MII-MDC, RMII-MDC	Т3	Bidirectional (5-V tolerant)	
PE31, CLK8, L1TCLKB, MII1-RXCLK	P9	Bidirectional (Optional: open-drain)	
PE30, L1RXDB, MII1-RXD2	R8	Bidirectional (Optional: open-drain)	

Table 36. Pin Assignments—JEDEC Standard (continued)

Document Revision History

17 Document Revision History

Table 37 lists significant changes between revisions of this hardware specification.

Table 37. Document Revision History

Revision Number	Date	Changes
0	2/2003	Initial release.
0.1	3/2003	Took out the time-slot assigner and changed the SCC for SCC3 to SCC4.
0.2	5/2003	Changed the package drawing, removed all references to Data Parity. Changed the SPI Master Timing Specs. 162 and 164. Added the RMII and USB timing. Added the 80-MHz timing.
0.3	5/2003	Made sure the pin types were correct. Changed the Features list to agree with the MPC885.
0.4	5/2003	Corrected the signals that had overlines on them. Made corrections on two pins that were typos.
0.5	5/2003	Changed the pin descriptions for PD8 and PD9.
0.6	5/2003	Changed a few typos. Put back the I ² C. Put in the new reset configuration, corrected the USB timing.
0.7	6/2003	Changed the pin descriptions per the June 22 spec, removed Utopia from the pin descriptions, changed PADIR, PBDIR, PCDIR and PDDIR to be 0 in the Mandatory Reset Config.
0.8	8/2003	Added the reference to USB 2.0 to the Features list and removed 1.1 from USB on the block diagrams.
0.9	8/2003	Changed the USB description to full-/low-speed compatible.
1.0	9/2003	Added the DSP information in the Features list. Put a new sentence under Mechanical Dimensions. Fixed table formatting. Nontechnical edits. Released to the external web.
1.1	10/2003	Added TDMb to the MPC875 Features list, the MPC875 Block Diagram, added 13.5 Serial Interface AC Electrical Specifications, and removed TDMa from the pin descriptions.
2.0	12/2003	Changed DBGC in the Mandatory Reset Configuration to X1. Changed the maximum operating frequency to 133 MHz. Put the timing in the 80 MHz column. Put in the orderable part numbers. Rounded the timings to hundredths in the 80 MHz column. Put the pin numbers in footnotes by the maximum currents in Table 6. Changed 22 and 41 in the Timing. Put TBD in the Thermal table.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 802.3, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2003-2007. All rights reserved.

Document Number: MPC875EC Rev. 4 08/2007

