E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	Cryptography
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc875vr66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC875/MPC870. Table 2 displays the maximum tolerated ratings and Table 3 displays the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	V _{DDL} (core voltage)	-0.3 to 3.4	V
	V _{DDH} (I/O voltage)	–0.3 to 4	V
	V _{DDSYN}	-0.3 to 3.4	V
	Difference between V_{DDL} and V_{DDSYN}	<100	mV
Input voltage ²	V _{in}	$GND-0.3$ to V_{DDH}	V
Storage temperature range	T _{stg}	-55 to +150	°C

Table 2. Maximum Tolerated Ratings

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V_{DDH}. This restriction applies to power up and normal operation (that is, if the MPC875/MPC870 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC875/MPC870.

Figure 3. Undershoot/Overshoot Voltage for V_{DDH} and V_{DDL}

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Power Dissipation 5

Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are equal, and 2:1, where CPU frequency is twice bus speed.

Die Revision	Bus Mode	Frequency	Typical ¹	Maximum ²	Unit
0	1:1	66 MHz	310	390	mW
		80 MHz	350	430	mW
	2:1	133 MHz	430	495	mW

Table 5. Power Dissipation (P_D)

¹ Typical power dissipation is measured at $V_{DDL} = V_{DDSYN} = 1.8$ V, and V_{DDH} is at 3.3 V. ² Maximum power dissipation at $V_{DDL} = V_{DDSYN} = 1.9$ V, and V_{DDH} is at 3.5 V.

NOTE

The values in Table 5 represent V_{DDL} -based power dissipation and do not include I/O power dissipation over V_{DDH} . I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

The V_{DDSYN} power dissipation is negligible.

DC Characteristics 6

Table 6 provides the DC electrical characteristics for the MPC875/MPC870.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Мах	Unit
Operating voltage	V _{DDH} (I/O)	3.135	3.465	V
	V _{DDL} (core)	1.7	1.9	V
	V _{DDSYN} ¹	1.7	1.9	V
	Difference between V _{DDL} and V _{DDSYN}	—	100	mV
Input high voltage (all inputs except EXTAL and EXTCLK) ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
EXTAL, EXTCLK input high voltage	V _{IHC}	$0.7 imes V_{DDH}$	V _{DDH}	V
Input leakage current, $V_{in} = 5.5 \text{ V}$ (except TMS, TRST, DSCK, and DSDI pins) for 5-V tolerant pins ¹	l _{in}	—	100	μA
Input leakage current, $V_{in} = V_{DDH}$ (except TMS, TRST, DSCK, and DSDI)	l _{in}	—	10	μA
Input leakage current, $V_{in} = 0 V$ (except TMS, TRST, DSCK, and DSDI pins)	l _{in}	_	10	μA
Input capacitance ⁴	C _{in}	—	20	pF

Characteristic	Symbol	Min	Мах	Unit
Output high voltage, $I_{OH} = -2.0$ mA, $V_{DDH} = 3.0$ V (except XTAL and open-drain pins)	V _{OH}	2.4	—	V
	V _{OL}	_	0.5	V

Table 6. DC Electrical Specifications (continued)

¹ The difference between V_{DDL} and V_{DDSYN} cannot be more than 100 mV.

- ² The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], PE(14:31), TDI, TDO, TCK, TRST, TMS, MI1_TXEN, and MII_MDIO are 5-V tolerant. The minimum voltage is still 2.0 V.
- 3 V_{IL}(max) for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.
- ⁴ Input capacitance is periodically sampled.
- ⁵ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(0:1), PA(0:4), PA(6:7), PA(10:11), PA15, PB19, PB(23:31), PC(6:7), PC(10:13), PC15, PD8, PE(14:31), MII1_CRS, MII_MDIO, MII1_TXEN, and MII1_COL.
- ⁶ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:7), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, OP(0:3), and BADDR(28:30).

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (V_{DDL} \times I_{DDL}) + P_{I/O}$, where $P_{I/O}$ is the power dissipation of the I/O drivers.

NOTE

The V_{DDSYN} power dissipation is negligible.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the following equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

11 Bus Signal Timing

The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.

Part Frequency	66	MHz	80) MHz	
i art requency	Min	Max	Min	Max	
Core frequency	40	66.67	40	80	
Bus frequency	40	66.67	40	80	

Table 8. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 9. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Frequency		66 MHz		MHz	133 MHz		
		Max	Min	Max	Min	Max	
Core frequency	40	66.67	40	80	40	133	
Bus frequency	20	33.33	20	40	20	66	

Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.

The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay

Table 10. Bus Operation Timings

Num	Characteristic	33	MHz	40 I	MHz	66 I	MHz	80	MHz	Unit
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B1	Bus period (CLKOUT), see Table 8	—	—	—	_	—	—	—	_	ns
B1a	EXTCLK to CLKOUT phase skew—If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	—	1	—	1	_	1	—	1	ns
B1c	Frequency jitter on EXTCLK		0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \ge 15 MHz	—	4	—	4	_	4	—	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz		5		5		5		5	ns

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

N	n Characteristic		MHz	40 I	MHz	66 MHz		80 MHz		11-14
NUM	Characteristic	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 × B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 6.00)	6.00	—	6.00	—	6.00		6	—	ns
B16a	$\overline{\text{TEA}}, \overline{\text{KR}}, \overline{\text{RETRY}}, \overline{\text{CR}} \text{ valid to CLKOUT (setup time) (MIN = 0.00 \times \text{B1} + 4.5)}$	4.50	—	4.50	—	4.50	_	4.50	—	ns
B16b	$\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}, \text{ valid to CLKOUT (setup time)}^2$ (4MIN = 0.00 × B1 + 0.00)	4.00	—	4.00	—	4.00	—	4.00	—	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = $0.00 \times B1 + 1.00^3$)	1.00	—	1.00	—	2.00	—	2.00	—	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	—	2.00		2.00	—	ns
B18	D(0:31) valid to CLKOUT rising edge (setup time) ⁴ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	—	6.00	_	6.00	—	ns
B19	CLKOUT rising edge to D(0:31) valid (hold time) ⁴ (MIN = $0.00 \times B1 + 1.00^5$)	1.00	_	1.00	_	2.00		2.00	—	ns
B20	D(0:31) valid to CLKOUT falling edge (setup time) ⁶ (MIN = $0.00 \times B1 + 4.00$)	4.00	—	4.00	—	4.00	—	4.00	—	ns
B21	CLKOUT falling edge to D(0:31) valid (hold time) ⁶ (MIN = $0.00 \times B1 + 2.00$)	2.00	—	2.00	—	2.00	_	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = $0.00 \times B1 + 8.00$)	—	8.00	—	8.00	—	8.00	—	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	5.20	12.30	4.69	10.93	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 and CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = $0.25 \times B1 - 2.00$)	5.60	—	4.30	—	1.80	—	1.13	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = $0.50 \times B1 - 2.00$)	13.20	_	10.50	_	5.60		4.25	—	ns

Table 10. Bus Operation Timings (continued)

Bus Signal Timing

	Ohennestenistis	33 MHz 40 MHz		MHz 66 MHz			80 1	11		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B25	CLKOUT rising edge to \overline{OE} , WE(0:3)/BS_B[0:3] asserted (MAX = 0.00 × B1 + 9.00)		9.00		9.00		9.00	_	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 × B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 × B1 - 2.00)	35.90	_	29.30	_	16.90	—	13.60	—	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 × B1 – 2.00)	43.50	_	35.50	_	20.70	—	16.75	—	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access CSNT = 0 (MAX = 0.00 × B1 + 9.00)	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	9.93	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	_	14.30	_	13.00	_	10.50	_	9.93	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	18.00	5.20	12.30	4.69	11.29	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	_	18.00	_	18.00	_	12.30	_	11.30	ns
B29	$eq:weighted_$	5.60	_	4.30	_	1.80	—	1.13	—	ns
B29a	$eq:weighted_$	13.20	_	10.50	_	5.60	_	4.25	_	ns
B29b	\overline{CS} negated to D(0:31) High-Z GPCM write access, ACS = 00, TRLX = 0 and CSNT = 0 (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	_	1.80	_	1.13	_	ns
B29c	\overline{CS} negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MIN = 0.50 × B1 - 2.00)	13.20	_	10.50	_	5.60	_	4.25	_	ns

Table 10. Bus Operation Timings (continued)

Bus Signal Timing

Figure 11 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 12 through Figure 15 provide the timing for the external bus read controlled by various GPCM factors.

Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)

MPC875/MPC870 PowerQUICC[™] Hardware Specifications, Rev. 4

Figure 20 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 21 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

13 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC875/MPC870.

13.1 Port C Interrupt AC Electrical Specifications

Table 17 provides the timings for Port C interrupts.

Table 17. Port C Interrupt Timir

Num	Characteristic	33.34	Unit	
	Unaracteristic		Max	onn
35	Port C interrupt pulse width low (edge-triggered mode)	55		ns
36	Port C interrupt minimum time between active edges	55		ns

Figure 41 shows the Port C interrupt detection timing.

Figure 41. Port C Interrupt Detection Timing

13.2 IDMA Controller AC Electrical Specifications

Table 18 provides the IDMA controller timings as shown in Figure 42 through Figure 45.

Table 18. IDMA Controller Timing

Num	Characteristic	All Frequencies		Unit
Num	Cildiacteristic	Min	Мах	Onit
40	DREQ setup time to clock high		—	ns
41	DREQ hold time from clock high ¹		—	ns
42	SDACK assertion delay from clock high		12	ns
43	SDACK negation delay from clock low		12	ns
44	SDACK negation delay from TA low		20	ns
45	SDACK negation delay from clock high		15	ns
46	\overline{TA} assertion to rising edge of the clock setup time (applies to external \overline{TA})	7		ns

¹ Applies to high-to-low mode (EDM = 1).

MPC875/MPC870 PowerQUICC[™] Hardware Specifications, Rev. 4

Figure 45. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

MPC875/MPC870 PowerQUICC[™] Hardware Specifications, Rev. 4

13.3 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 46.

Table 19. Baud Rate Generator Timing

Num	Num Characteristic	All Freq	Unit	
Num		Min		
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	—	ns

Figure 46. Baud Rate Generator Timing Diagram

13.4 Timer AC Electrical Specifications

Table 20 provides the general-purpose timer timings as shown in Figure 47.

Table	20.	Timer	Timing
-------	-----	-------	--------

Num	Characteristic	All Frequencies		Unit	
		Min	Min Max	Onic	
61	TIN/TGATE rise and fall time	10	—	ns	
62	TIN/TGATE low time		—	clk	
63	TIN/TGATE high time	2	—	clk	
64	TIN/TGATE cycle time	3	—	clk	
65	CLKO low to TOUT valid	3	25	ns	

MPC875/MPC870 PowerQUICC[™] Hardware Specifications, Rev. 4

SCC in NMSI Mode Electrical Specifications 13.6

Table 22 provides the NMSI external clock timing.

Table 22. NMSI Externa	Clock Timing
------------------------	--------------

Num	Num Characteristic		All Frequencies			
Num	Characteristic	Min	Мах	Onit		
100	RCLK3 and TCLK3 width high ¹	1/SYNCCLK	_	ns		
101	RCLK3 and TCLK3 width low	1/SYNCCLK + 5	_	ns		
102	RCLK3 and TCLK3 rise/fall time	—	15.00	ns		
103	TXD3 active delay (from TCLK3 falling edge)	0.00	50.00	ns		
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	50.00	ns		
105	CTS3 setup time to TCLK3 rising edge	5.00	_	ns		
106	RXD3 setup time to RCLK3 rising edge	5.00	_	ns		
107	RXD3 hold time from RCLK3 rising edge ²	5.00	_	ns		
108	CD3 setup time to RCLK3 rising edge	5.00	—	ns		

¹ The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2.25/1.
 ² Also applies to CD and CTS hold time when they are used as external SYNC signals.

Table 23 provides the NMSI internal clock timing.

Table 23. NMSI Internal Clock Timing

Num	Characteristic	All Frequencies		Unit	
Num	Cildiacteristic	Min	Min Max		
100	RCLK3 and TCLK3 frequency ¹	0.00	SYNCCLK/3	MHz	
102	RCLK3 and TCLK3 rise/fall time		_	ns	
103	TXD3 active delay (from TCLK3 falling edge)	0.00	30.00	ns	
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	30.00	ns	
105	CTS3 setup time to TCLK3 rising edge	40.00	_	ns	
106	RXD3 setup time to RCLK3 rising edge 40.00 —		_	ns	
107	RXD3 hold time from RCLK3 rising edge ²	0.00	_	ns	
108	CD3 setup time to RCLK3 rising edge	40.00	—	ns	

The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater or equal to 3/1.
 Also applies to CD and CTS hold time when they are used as external SYNC signals.

Figure 55. HDLC Bus Timing Diagram

13.7 Ethernet Electrical Specifications

Table 24 provides the Ethernet timings as shown in Figure 56 through Figure 58.

Table 24. Ethernet Timing

Num	Characteristic	All Freq	11:1:4	
Nulli	Characteristic	Min	Мах	Unit
120	CLSN width high	40	_	ns
121	RCLK3 rise/fall time	—	15	ns
122	RCLK3 width low	40	_	ns
123	RCLK3 clock period ¹	80	120	ns
124	RXD3 setup time		_	ns
125	RXD3 hold time		_	ns
126	RENA active delay (from RCLK3 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK3 rise/fall time — 15		15	ns
129	TCLK3 width low	40	_	ns
130	TCLK3 clock period ¹	99	101	ns
131	TXD3 active delay (from TCLK3 rising edge)	_	50	ns
132	TXD3 inactive delay (from TCLK3 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK3 rising edge)	10	50	ns
134	TENA inactive delay (from TCLK3 rising edge)	10	50	ns

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Num	Num		All Frequencies		
	Min	Max	Unit		
138	CLKO1 low to SDACK asserted ²	_	20	ns	
139	CLKO1 low to SDACK negated ²		20	ns	

Table 24. Ethernet Timing (continued)

¹ The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

Figure 56. Ethernet Collision Timing Diagram

Figure 57. Ethernet Receive Timing Diagram

13.9 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 60 and Figure 61.

Table 26. SPI Master Timing

Neuro	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Мах	Unit
160	Master cycle time	4	1024	t _{cyc}
161	Master clock (SCK) high or low time 2 512		512	t _{cyc}
162	Master data setup time (inputs) 1		—	ns
163	Master data hold time (inputs)		—	ns
164	Master data valid (after SCK edge)		10	ns
165	Master data hold time (outputs) 0 —		—	ns
166	Rise time output		15	ns
167	Fall time output	_	15	ns

MPC875/MPC870 PowerQUICC™ Hardware Specifications, Rev. 4

Num	Characteristic	All Frequencies			
Num		Min	Мах	Onic	
210	SDL/SCL fall time	—	300	ns	
211	Stop condition setup time	4.7	—	μs	

Table 28. I²C Timing (SCL < 100 kHz) (continued)

SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scalar × 2). The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.

Table 29 provides the I^2C (SCL > 100 kHz) timings.

lable 29.	. I ² C	Timing	(SCL	>	100	kHz))
-----------	--------------------	--------	------	---	-----	------	---

Num	Characteristic	Expression	All Frequencies		l la it
			Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	—	1/(2.2 × fSCL)	_	S
203	Low period of SCL	—	1/(2.2 × fSCL)	_	S
204	High period of SCL	—	1/(2.2 × fSCL)	_	S
205	Start condition setup time	—	1/(2.2 × fSCL)	_	S
206	Start condition hold time	_	1/(2.2 × fSCL)	_	S
207	Data hold time	—	0	_	S
208	Data setup time	—	1/(40 × fSCL)	_	S
209	SDL/SCL rise time	—	—	1/(10 × fSCL)	S
210	SDL/SCL fall time	—	—	$1/(33 \times \text{fSCL})$	S
211	Stop condition setup time	—	$1/2(2.2 \times \text{fSCL})$	_	S

SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scalar × 2). The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.

Figure 64 shows the I^2C bus timing.

Name	Pin Number	Туре
PB30, SPICLK	Т17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB29, SPIMOSI	R17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB28, SPIMISO, BRGO4	R14	Bidirectional (Optional: open-drain) (5-V tolerant)
PB27, I2CSDA, BRGO1	N13	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	N12	Bidirectional (Optional: open-drain)
PB25, SMTXD1	U13	Bidirectional (Optional: open-drain) (5-V tolerant)
PB24, SMRXD1	T12	Bidirectional (Optional: open-drain) (5-V tolerant)
PB23, SDACK1, SMSYN1	U12	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	T11	Bidirectional (Optional: open-drain)
PC15, DREQ0, L1ST1	R15	Bidirectional (5-V tolerant)
PC13, MII1-TXD3, SDACK1	U9	Bidirectional (5-V tolerant)
PC12, MII1-TXD2, TOUT1	T15	Bidirectional (5-V tolerant)
PC11, USBRXP	P12	Bidirectional
PC10, USBRXN, TGATE1	U11	Bidirectional
PC7, CTS4, L1TSYNCB, USBTXP	Т10	Bidirectional (5-V tolerant)
PC6, CD4, L1RSYNCB, USBTXN	P10	Bidirectional (5-V tolerant)
PD8, RXD4, MII-MDC, RMII-MDC	Т3	Bidirectional (5-V tolerant)
PE31, CLK8, L1TCLKB, MII1-RXCLK	P9	Bidirectional (Optional: open-drain)
PE30, L1RXDB, MII1-RXD2	R8	Bidirectional (Optional: open-drain)

Table 36. Pin Assignments—JEDEC Standard (continued)