
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

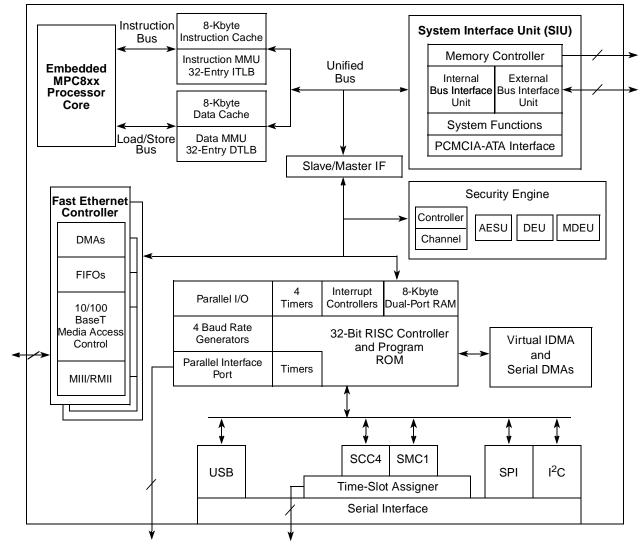
Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

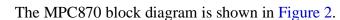
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	80MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	Cryptography
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc875zt80

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- The MPC875 has a time-slot assigner (TSA) that supports one TDM bus (TDMb)
 - Allows SCC and SMC to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - Can be internally connected to two serial channels (one SCC and one SMC)
- PCMCIA interface
 - Master (socket) interface, release 2.1-compliant
 - Supports one independent PCMCIA socket on the MPC875/MPC870
 - Eight memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: = \neq < >
 - Each watchpoint can generate a break point internally
- Normal high and normal low power modes to conserve power
- 1.8-V core and 3.3-V I/O operation with 5-V TTL compatibility
- The MPC875/MPC870 comes in a 256-pin ball grid array (PBGA) package



The MPC875 block diagram is shown in Figure 1.

Figure 1. MPC875 Block Diagram

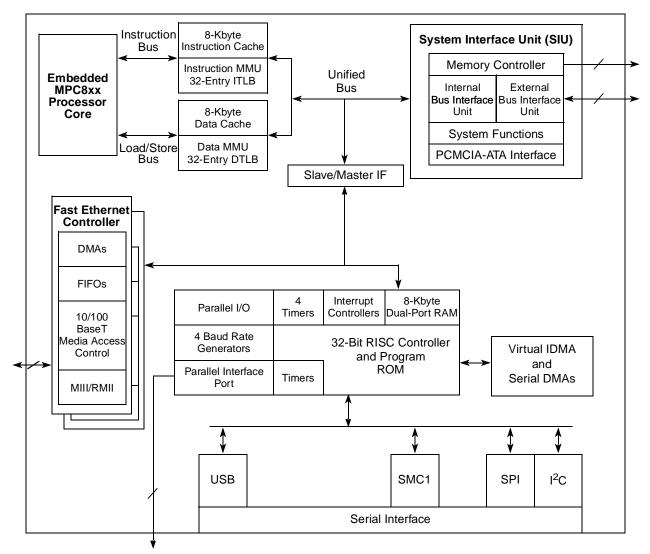


Figure 2. MPC870 Block Diagram

NP

Thermal Characteristics

Rating	Symbol	Value	Unit
Temperature ¹ (standard)	T _{A(min)}	0	°C
	T _{J(max)}	95	°C
Temperature (extended)	T _{A(min)}	-40	°C
	T _{J(max)}	100	°C

Table 3. Operating	Temperatures
--------------------	--------------

¹ Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_J.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DDH}).

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC875/MPC870.

Rating	E	nvironment	Symbol	Value	Unit
Junction-to-ambient ¹	Single-layer board (1s)	$R_{\theta JA}^2$	43	°C/W	
Four-layer board (2s2p)Airflow (200 ft/min)Single-layer board (1s)		Four-layer board (2s2p)	$R_{\theta JMA}{}^3$	29	
		$R_{\theta JMA}{}^3$	36		
		Four-layer board (2s2p)		26	
Junction-to-board ⁴			R _{θJB}	20	
Junction-to-case ⁵				10	
Junction-to-package top ⁶	Natural convection	Natural convection		2	
	Airflow (200 ft/min)		Ψ_{JT}	2	

Table 4. MPC875/MPC870 Thermal Resistance Data

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

- ⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.

⁶ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

Thermal Calculation and Measurement

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature. If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{\rm J} = T_{\rm B} + (R_{\rm \theta JB} \times P_{\rm D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature (°C)$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

Num	Characteristic	33	MHz	40 MHz		66 MHz		80 MHz		Unit
Num		Min	Max	Min	Max	Min	Max	Min	Max	Unit
B30d	WE(0:3)/BS_B[0:3] negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1	38.67		31.38		17.83		14.19		ns
B31	CLKOUT falling edge to \overline{CS} valid as requested by control bit CST4 in the corresponding word in the UPM (MAX = $0.00 \times B1 + 6.00$)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid as requested by control bit CST1 in the corresponding word in the UPM (MAX = $0.25 \times B1 + 6.80$)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B31b	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = $0.00 \times B1 + 8.00$)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = $0.25 \times B1 + 6.30$)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.40	ns
B31d	CLKOUT falling edge to \overline{CS} valid as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 × B1 + 6.6)	13.30	18.00	11.30	16.00	7.60	12.30	4.69	11.30	ns
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 × B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to \overline{BS} valid as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B32b	CLKOUT rising edge to $\overline{\text{BS}}$ valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = $0.00 \times \text{B1} + 8.00$)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = $0.25 \times \text{B1} + 6.80$)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B32d	CLKOUT falling edge to \overline{BS} valid as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 × B1 + 6.60)	13.30	18.00	11.30	16.00	7.60	12.30	4.49	11.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 × B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns

Table 10. Bus Operation Timings (continued)

Table 10. Bus	Operation	Timings	(continued)
---------------	-----------	---------	-------------

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	onit
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation (MAX = TBD)	—	TBD	_	TBD	_	TBD	_	TBD	ns

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC875/MPC870 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC875/MPC870 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ This formula applies to bus operation up to 50 MHz.

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 23.

Figure 11 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

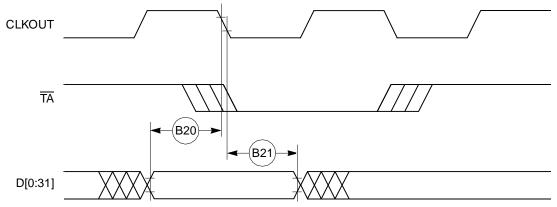


Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 12 through Figure 15 provide the timing for the external bus read controlled by various GPCM factors.

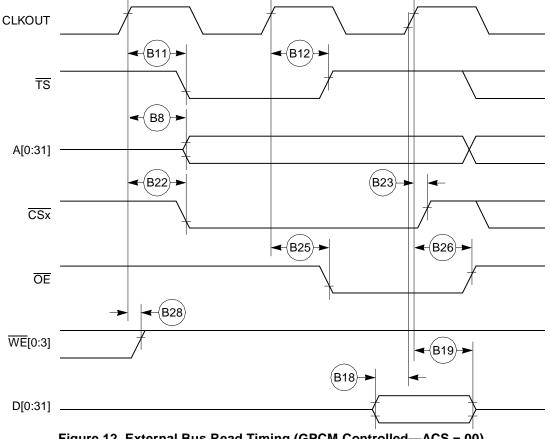
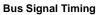



Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)



Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

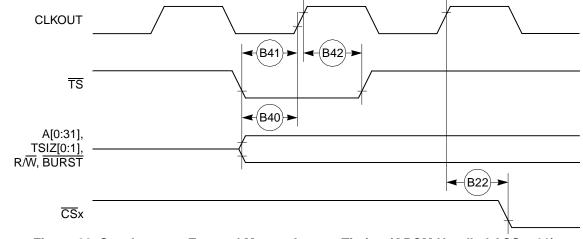


Figure 22 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 23 provides the timing for the asynchronous external master memory access controlled by the GPCM.

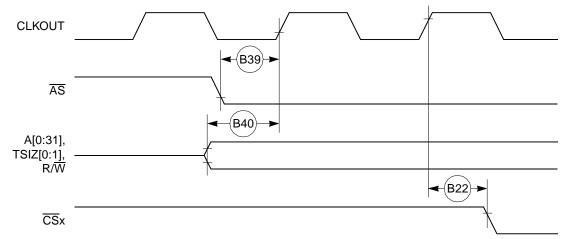


Figure 24 provides the timing for the asynchronous external master control signals negation.

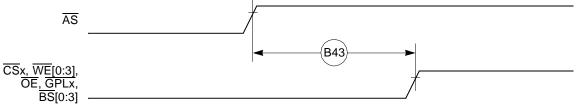


Figure 24. Asynchronous External Master—Control Signals Negation Timing

1

Table 11 provides the interrupt timing for the MPC875/MPC870.

Table 11. Interrupt Timing	
----------------------------	--

Num	Characteristic ¹	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4 × T _{CLOCKOUT}		_

The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC875/MPC870 is able to support.

Figure 25 provides the interrupt detection timing for the external level-sensitive lines.

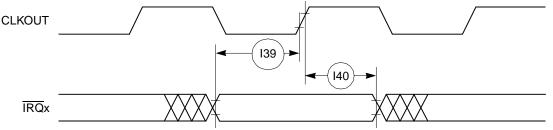


Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.

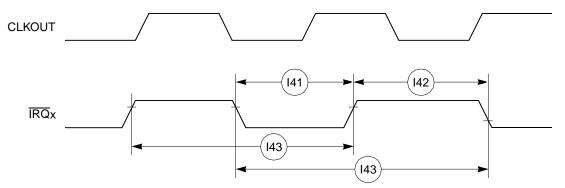


Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines

Figure 34 shows the reset timing for the data bus configuration.

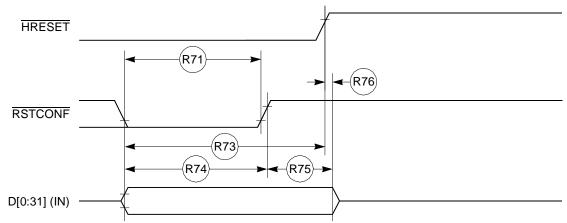


Figure 35 provides the reset timing for the data bus weak drive during configuration.

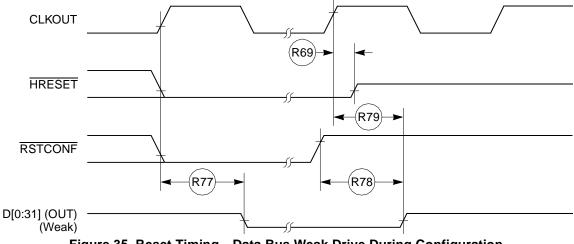
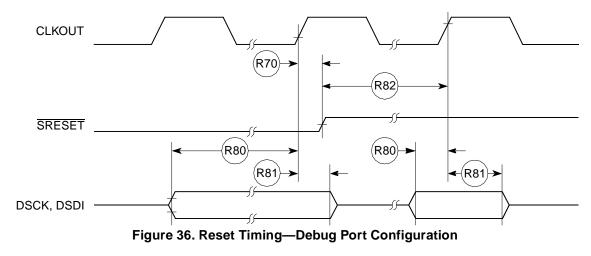



Figure 36 provides the reset timing for the debug port configuration.

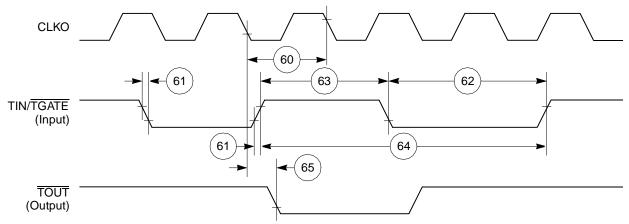
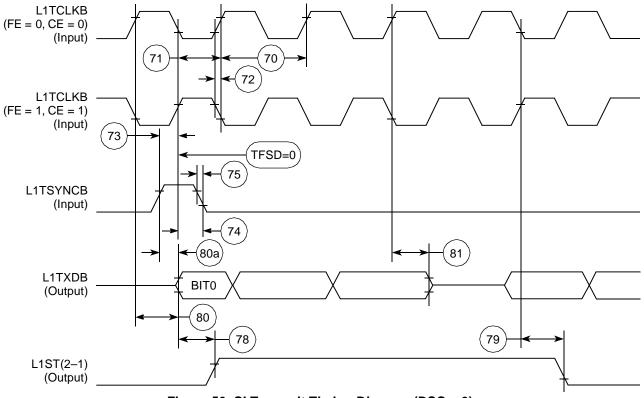


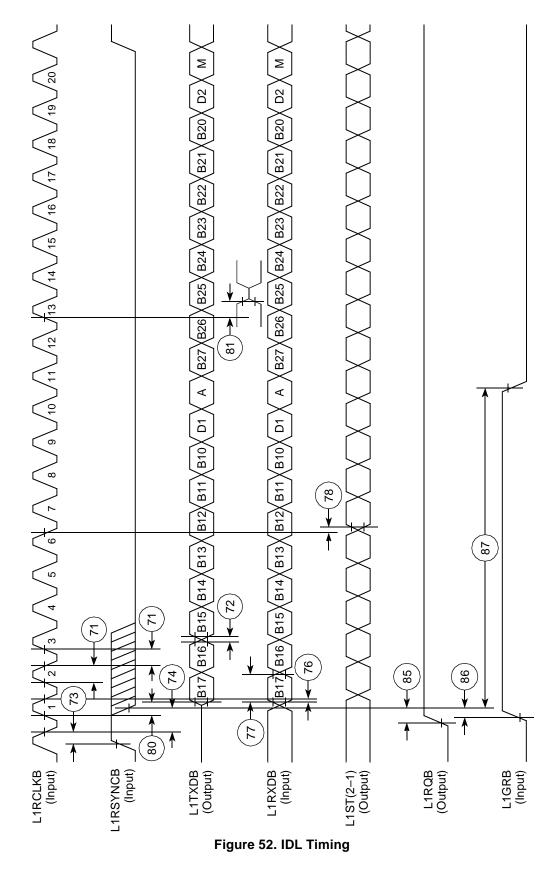
Figure 47. CPM General-Purpose Timers Timing Diagram

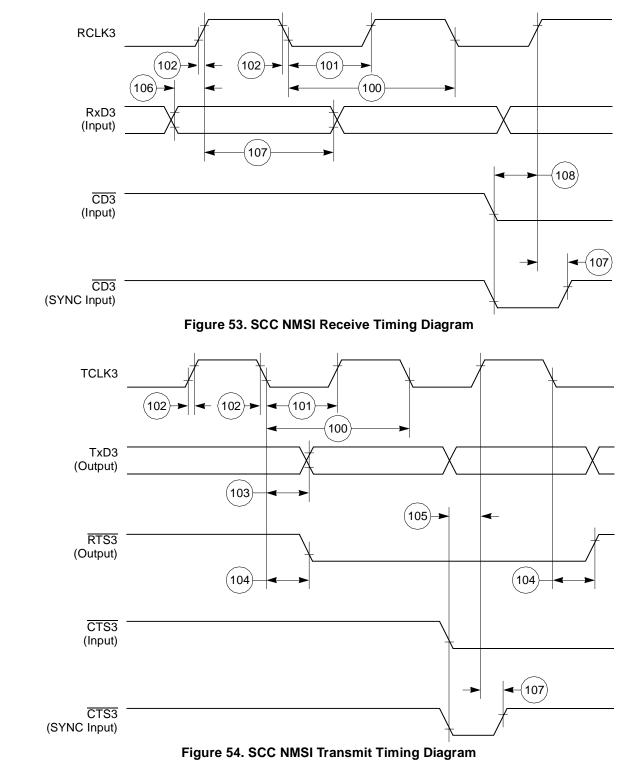
13.5 Serial Interface AC Electrical Specifications

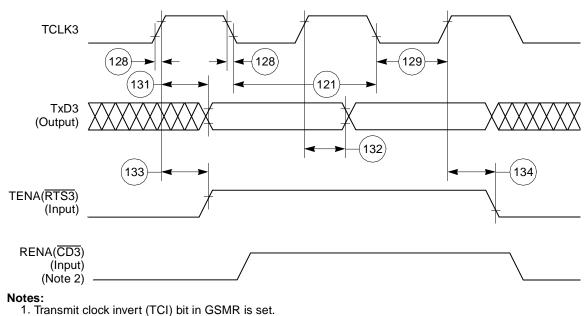

Table 21 provides the serial interface (SI) timings as shown in Figure 48 through Figure 52.

Num	Characteristic	All Fre	Unit	
Num	Characteristic	Min	Мах	Onic
70	L1RCLKB, L1TCLKB frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2.5	MHz
71	L1RCLKB, L1TCLKB width low $(DSC = 0)^2$	P + 10	—	ns
71a	L1RCLKB, L1TCLKB width high $(DSC = 0)^3$	P + 10		ns
72	L1TXDB, L1ST1 and L1ST2, L1RQ, L1CLKO rise/fall time	_	15.00	ns
73	L1RSYNCB, L1TSYNCB valid to L1CLKB edge (SYNC setup time)	20.00		ns
74	L1CLKB edge to L1RSYNCB, L1TSYNCB, invalid (SYNC hold time)	35.00		ns
75	L1RSYNCB, L1TSYNCB rise/fall time	—	15.00	ns
76	L1RXDB valid to L1CLKB edge (L1RXDB setup time)	17.00		ns
77	L1CLKB edge to L1RXDB invalid (L1RXDB hold time)	13.00	—	ns
78	L1CLKB edge to L1ST1 and L1ST2 valid ⁴	10.00	45.00	ns
78A	L1SYNCB valid to L1ST1 and L1ST2 valid	10.00	45.00	ns
79	L1CLKB edge to L1ST1 and L1ST2 invalid	10.00	45.00	ns
80	L1CLKB edge to L1TXDB valid	10.00	55.00	ns
80A	L1TSYNCB valid to L1TXDB valid ⁴	10.00	55.00	ns
81	L1CLKB edge to L1TXDB high impedance	0.00	42.00	ns
82	L1RCLKB, L1TCLKB frequency (DSC = 1)	— 16.00 or SYNCCLK/2		MHz
83	L1RCLKB, L1TCLKB width low (DSC = 1)	P + 10	—	ns

Table 21. SI Timing


CPM Electrical Characteristics


CPM Electrical Characteristics


CPM Electrical Characteristics

2. If RENA is negated before TENA or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission.

Figure 58. Ethernet Transmit Timing Diagram

13.8 SMC Transparent AC Electrical Specifications

Table 25 provides the SMC transparent timings as shown in Figure 59.

Num	Characteristic		All Frequencies		
Num	Characteristic	Min	Мах	Unit	
150	SMCLK clock period ¹	100	_	ns	
151	SMCLK width low	50		ns	
151A	SMCLK width high	50	_	ns	
152	SMCLK rise/fall time	—	15	ns	
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns	
154	SMRXD/SMSYNC setup time	20	—	ns	
155	RXD1/SMSYNC hold time	5	—	ns	

¹ SYNCCLK must be at least twice as fast as SMCLK.

Figure 66 shows the MII transmit signal timing diagram.

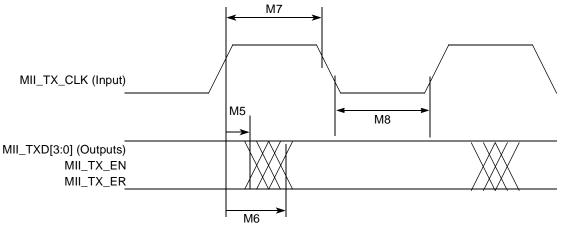


Figure 66. MII Transmit Signal Timing Diagram

15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 33 provides information on the MII async inputs signal timing.

Table 33. MII Async Inputs Signal Timing

Nu	Characteristic	Min	Max	Unit
M	MII_CRS, MII_COL minimum pulse width	1.5	—	MII_TX_CLK period

Figure 67 shows the MII asynchronous inputs signal timing diagram.

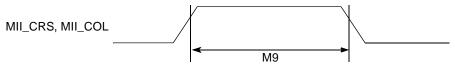


Figure 67. MII Async Inputs Timing Diagram

15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 34 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz.

Table 34. MII Serial Management Channel Tir	ning
---	------

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	—	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

FEC Electrical Characteristics

Figure 68 shows the MII serial management channel timing diagram.

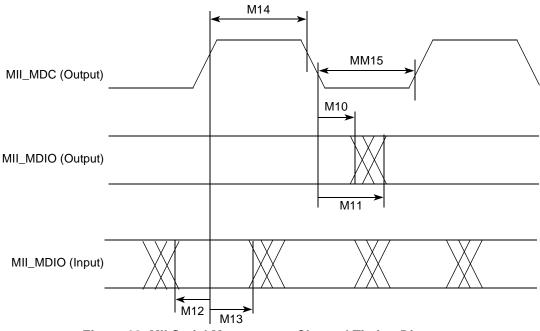


Figure 68. MII Serial Management Channel Timing Diagram

Name	Pin Number	Туре
PB30, SPICLK	T17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB29, SPIMOSI	R17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB28, SPIMISO, BRGO4	R14	Bidirectional (Optional: open-drain) (5-V tolerant)
PB27, I2CSDA, BRGO1	N13	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	N12	Bidirectional (Optional: open-drain)
PB25, SMTXD1	U13	Bidirectional (Optional: open-drain) (5-V tolerant)
PB24, SMRXD1	T12	Bidirectional (Optional: open-drain) (5-V tolerant)
PB23, SDACK1, SMSYN1	U12	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	T11	Bidirectional (Optional: open-drain)
PC15, DREQ0, L1ST1	R15	Bidirectional (5-V tolerant)
PC13, MII1-TXD3, SDACK1	U9	Bidirectional (5-V tolerant)
PC12, MII1-TXD2, TOUT1	T15	Bidirectional (5-V tolerant)
PC11, USBRXP	P12	Bidirectional
PC10, USBRXN, TGATE1	U11	Bidirectional
PC7, <u>CTS4</u> , L1TSYNCB, USBTXP	T10	Bidirectional (5-V tolerant)
PC6, CD4 , L1RSYNCB, USBTXN	P10	Bidirectional (5-V tolerant)
PD8, RXD4, MII-MDC, RMII-MDC	Т3	Bidirectional (5-V tolerant)
PE31, CLK8, L1TCLKB, MII1-RXCLK	P9	Bidirectional (Optional: open-drain)
PE30, L1RXDB, MII1-RXD2	R8	Bidirectional (Optional: open-drain)

Table 36. Pin Assignments—JEDEC Standard (continued)