

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc870cvr133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP

One consequence of multiple power supplies is that when power is initially applied, the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- + V_{DDL} must not exceed V_{DDH} during power up and power down
- + V_{DDL} must not exceed 1.9 V, and V_{DDH} must not exceed 3.465 V

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in Figure 4 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power down.

Figure 4. Example Voltage Sequencing Circuit

9 Mandatory Reset Configurations

The MPC875/MPC870 requires a mandatory configuration during reset.

If hardware reset configuration word (HRCW) is enabled, the HRCW[DBGC] value needs to be set to binary X1 in the HRCW and the SIUMCR[DBGC] should be programmed with the same value in the boot code after reset. This can be done by asserting the RSTCONF during HRESET assertion.

If HRCW is disabled, the SIUMCR[DBGC] should be programmed with binary X1 in the boot code after reset by negating the $\overline{\text{RSTCONF}}$ during the $\overline{\text{HRESET}}$ assertion.

The MBMR[GPLB4DIS], PAPAR, PADIR, PBPAR, PBDIR, PCPAR, and PCDIR need to be configured with the mandatory values in Table 7 in the boot code after the reset is negated.

Register/Configuration	Field	Value (Binary)
HRCW (Hardware reset configuration word)	HRCW[DBGC]	X1
SIUMCR (SIU module configuration register)	SIUMCR[DBGC]	X1
MBMR (Machine B mode register)	MBMR[GPLB4DIS}	0
PAPAR (Port A pin assignment register)	PAPAR[5:9] PAPAR[12:13]	0

Table 7. Mandatory Reset Configuration of MPC875/MPC870

Layout Practices

Register/Configuration	Field	Value (Binary)
PADIR (Port A data direction register)	PADIR[5:9] PADIR[12:13]	0
PBPAR (Port B pin assignment register)	PBPAR[14:18] PBPAR[20:22]	0
PBDIR (Port B data direction register)	PBDIR[14:8] PBDIR[20:22]	0
PCPAR (Port C pin assignment register)	PCPAR[4:5] PCPAR[8:9] PCPAR[14]	0
PCDIR (Port C data direction register)	PCDIR[4:5] PCDIR[8:9] PCDIR[14]	0
PDPAR (Port D pin assignment register)	PDPAR[3:7] PDPAR[9:5]	0
PDDIR (Port D data direction register)	PDDIR[3:7] PDDIR[9:15]	0

Table 7. Mandatory Reset Configuration of MPC875/MPC870 (continued)

10 Layout Practices

Each V_{DD} pin on the MPC875/MPC870 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1-µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC875/MPC870 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, refer to Section 14.4.3, "Clock Synthesizer Power (V_{DDSYN} , V_{SSSYN} , V_{SSSYN1})," in the *MPC885 PowerQUICC*TM *Family Reference Manual*.

The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.

Part Frequency		MHz	80 MHz		
i art requency	Min	Max	Min	Max	
Core frequency	40	66.67	40	80	
Bus frequency	40	66.67	40	80	

Table 8. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 9. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Frequency	66 MHz		80 MHz		133 MHz	
i art requency	Min	Max	Min	Max	Min	Max
Core frequency	40	66.67	40	80	40	133
Bus frequency	20	33.33	20	40	20	66

Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.

The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay

Table 10. Bus Operation Timings

Num	Characteristic	33	33 MHz		40 MHz		66 MHz		80 MHz	
Num		Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B1	Bus period (CLKOUT), see Table 8	—	—	—	_	—	—	—	_	ns
B1a	EXTCLK to CLKOUT phase skew—If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	—	1	—	1	_	1	—	1	ns
B1c	Frequency jitter on EXTCLK		0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \ge 15 MHz	—	4	—	4	_	4	—	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz		5		5		5		5	ns

	Characteriatia	33 MHz		40 MHz		66 MHz		80 MHz		11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B25	CLKOUT rising edge to \overline{OE} , WE(0:3)/BS_B[0:3] asserted (MAX = 0.00 × B1 + 9.00)		9.00		9.00		9.00	_	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 × B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = $1.25 \times B1 - 2.00$)	35.90	_	29.30	_	16.90	—	13.60	—	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 × B1 – 2.00)	43.50	_	35.50	_	20.70	—	16.75	—	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access CSNT = 0 (MAX = 0.00 × B1 + 9.00)	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	9.93	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	_	14.30	_	13.00	_	10.50	_	9.93	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)/BS_B[0:3]$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	18.00	5.20	12.30	4.69	11.29	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	_	18.00	_	18.00	_	12.30	_	11.30	ns
B29	$eq:weighted_$	5.60	_	4.30	_	1.80	—	1.13	—	ns
B29a	$eq:weighted_$	13.20	_	10.50	_	5.60	_	4.25	_	ns
B29b	\overline{CS} negated to D(0:31) High-Z GPCM write access, ACS = 00, TRLX = 0 and CSNT = 0 (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	_	1.80	_	1.13	_	ns
B29c	\overline{CS} negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MIN = 0.50 × B1 - 2.00)	13.20	_	10.50	_	5.60	_	4.25	_	ns

Table 10. Bus Operation Timings (continued)

Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Table 11 provides the interrupt timing for the MPC875/MPC870.

Num	Characteristic ¹	All Freq	Unit	
Num	Gharacteristic	Min	Мах	Onit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00		ns
I40	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
l42	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$		_

¹ The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC875/MPC870 is able to support.

Figure 25 provides the interrupt detection timing for the external level-sensitive lines.

Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines

Figure 34 shows the reset timing for the data bus configuration.

Figure 35 provides the reset timing for the data bus weak drive during configuration.

Figure 36 provides the reset timing for the debug port configuration.

12 IEEE 1149.1 Electrical Specifications

Table 16 provides the JTAG timings for the MPC875/MPC870 shown in Figure 37 through Figure 40.

Table 16. JTAG Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Unit
J82	TCK cycle time	100.00	—	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	—	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	—	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	ns

Figure 37. JTAG Test Clock Input Timing

Figure 43. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

Figure 45. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

Num	Characteristic	All Fre	Unit	
Num	Characteristic	Min	Мах	Unit
83a	L1RCLKB, L1TCLKB width high (DSC = 1) ³	P + 10	_	ns
84	L1CLKB edge to L1CLKOB valid (DSC = 1)	—	30.00	ns
85	L1RQB valid before falling edge of L1TSYNCB ⁴	1.00	_	L1TCLK
86	L1GRB setup time ²	42.00	_	ns
87	L1GRB hold time	42.00	_	ns
88	L1CLKB edge to L1SYNCB valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 21. SI Timing (continued)

¹ The ratio SYNCCLK/L1RCLKB must be greater than 2.5/1.

² These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after the L1CLKB edge or L1SYNCB, whichever comes later.

13.9 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 60 and Figure 61.

Table 26. SPI Master Timing

Neuro	Characteristic		All Frequencies		
Num			Мах	Unit	
160	Master cycle time	4	1024	t _{cyc}	
161	Master clock (SCK) high or low time	2	512	t _{cyc}	
162	Master data setup time (inputs)	15	—	ns	
163	Master data hold time (inputs)	0	—	ns	
164	Master data valid (after SCK edge)	_	10	ns	
165	Master data hold time (outputs)	0	—	ns	
166	Rise time output	_	15	ns	
167	Fall time output	_	15	ns	

13.10 SPI Slave AC Electrical Specifications

Table 27 provides the SPI slave timings as shown in Figure 62 and Figure 63.

Table 27. SPI Slave Timing

Num	Characteristic	All Frequencies		Unit
		Min	Мах	
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	_	ns
172	Slave enable lag time	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	_	ns
176	Slave data hold time (inputs)	20	_	ns
177	Slave access time	—	50	ns

14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 30 lists the USB interface timings.

Table 30. USB Interface AC Timing Specifications

Namo	Characteristic	All Frequencies		Unit
Name		Min	Мах	
US1	USBCLK frequency of operation ¹ Low speed Full speed	6 48		MHz
US4	USBCLK duty cycle (measured at 1.5 V)	45	55	%

¹ USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

15 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%.

Table 31 provides information on the MII receive signal timing.

Num	Characteristic	Min	Мах	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5		ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period
M1_RMII	RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup	4		ns
M2_RMII	RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold	2		ns

Table 31. MII Receive Signal Timing

16.1 Pin Assignments

Figure 69 shows the JEDEC pinout of the PBGA package as viewed from the top surface. For additional information, see the *MPC885 PowerQUICC Family User's Manual*.

NOTE

The pin numbering starts with B2 in order to conform to the JEDEC standard for 23-mm body size using a 16×16 array.

2 7 8 9 10 11 12 13 14 3 4 5 6 15 16 17 O O O O EXTCLK MODCK1 \bigcup_{ALEA} \bigcirc CS3 O N/C в Ο O OP0 $O_{\overline{CS5}}$ MODCK2 $\bigcirc_{\overline{BB}}$ $\bigcup_{\overline{TS}}$ $\bigcup_{\overline{TA}}$ O_{CS2} С \bigcirc \cap О \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc CE1A RSTCONF SRESET BADDR29 OP1 ALEB IRQ2 BDIP GPLAB3 GPLA0 IPA7 D \bigcirc \bigcirc Ο IPA2 WAITA PORESET XTAL EXTAL BADDR30 IPB1 BG GPLA4 GPLA5 $\overline{\mathsf{WR}}$ CE2A CS7 WE2 WE1 IPA4 Е Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc О Ο Ο Ο Ο Ο HRESET BADDR28 IRQ4 CS1 GPLB4 CS4 GPLAB2 BSA1 BSA2 **IRQ3 WEO** D31 IPA5 IPA3 VSSSYN VDDSYN F Ο \bigcirc \bigcirc \bigcirc O_{CS6} Ο Ο O \bigcirc O Ο \bigcirc \bigcirc \odot Ο Ο BSAO BSA3 D30 IPA6 IPA1 VSSSYN VDDL VDDL OE TSIZ0 A31 D29 G Ο Ο Ο \bigcirc Ο \bigcirc O VDDH \bigcirc \bigcirc O VDDH \bigcirc Ο \bigcirc \bigcirc Ο Ο D28 CLKOUT IPA0 WE3 TSI71 A22 D7 D26 A26 A18 н Ο Ο Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc Ο \bigcirc Ο Ο D22 D6 D24 D25 VDDL VDDH GND VDDH VDDL A28 A30 A25 A24 O D20 O D21 () A20 O A29 J Ο \bigcirc \bigcirc Ο Ο \bigcirc \bigcirc O A23 O A21 Ο Ο \bigcirc D19 D18 GND Κ Ο Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο Ο Ο 0 Ο Ο \bigcirc \bigcirc D15 D16 D14 VDDL GND VDDL D5 A14 A19 A27 A17 O D2 () A12 L \bigcirc Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο D27 DO A15 A10 A16 D3 () A8 Μ \bigcirc Ο Ο Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc \bigcirc Ο A11 **IRQ0** MII_MDIO A2 A13 D11 D9 D12 PE18 0 0 \bigcirc 0 \bigcirc \bigcirc Ο \bigcirc \bigcirc 0 Ν \bigcirc 0 Ο \bigcirc Ο \bigcirc D13 IRQ7 PA2 VDDL VDDL PB26 PB27 A1 A6 A7 D10 D1 A9 \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc Р Ο \bigcirc Ο \bigcirc \bigcirc PE14 PE31 D23 D17 PE22 PA0 PA4 PC6 PA6 PC11 TDO PA15 A3 Α5 R О O Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc O PB28 O PC15 \bigcirc_{A0} \bigcirc PE19 PE28 PE30 PA11 MII_COL PA7 PA10 тск PB29 PE25 PA3 D4 D8 \bigcirc Ο \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc т \bigcirc Ο \bigcirc PD8 PB31 PE27 PE17 PE21 PC7 PB19 PC12 N/C PB30 PE26 PA1 PE15 PB24 TDI TMS U O PE20 O PE23 MII-TX-EN PE16 O PE29 O PE24 O PC13 O MII-CRS O PC10 O PB23 O PB25 O PA14 O N/C

NOTE: This is the top view of the device.

Figure 69. Pinout of the PBGA Package—JEDEC Standard

Name	Pin Number	Туре
PB30, SPICLK	Т17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB29, SPIMOSI	R17	Bidirectional (Optional: open-drain) (5-V tolerant)
PB28, SPIMISO, BRGO4	R14	Bidirectional (Optional: open-drain) (5-V tolerant)
PB27, I2CSDA, BRGO1	N13	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	N12	Bidirectional (Optional: open-drain)
PB25, SMTXD1	U13	Bidirectional (Optional: open-drain) (5-V tolerant)
PB24, SMRXD1	T12	Bidirectional (Optional: open-drain) (5-V tolerant)
PB23, SDACK1, SMSYN1	U12	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	T11	Bidirectional (Optional: open-drain)
PC15, DREQ0, L1ST1	R15	Bidirectional (5-V tolerant)
PC13, MII1-TXD3, SDACK1	U9	Bidirectional (5-V tolerant)
PC12, MII1-TXD2, TOUT1	T15	Bidirectional (5-V tolerant)
PC11, USBRXP	P12	Bidirectional
PC10, USBRXN, TGATE1	U11	Bidirectional
PC7, CTS4, L1TSYNCB, USBTXP	Т10	Bidirectional (5-V tolerant)
PC6, CD4, L1RSYNCB, USBTXN	P10	Bidirectional (5-V tolerant)
PD8, RXD4, MII-MDC, RMII-MDC	Т3	Bidirectional (5-V tolerant)
PE31, CLK8, L1TCLKB, MII1-RXCLK	P9	Bidirectional (Optional: open-drain)
PE30, L1RXDB, MII1-RXD2	R8	Bidirectional (Optional: open-drain)

Table 36. Pin Assignments—JEDEC Standard (continued)

Name	Pin Number	Туре
TDO, DSDO	P13	Output (5-V tolerant)
MII1_CRS	U10	Input
MII_MDIO	M13	Bidirectional (5-V tolerant)
MII1_TX_EN, RMII1_TX_EN	U5	Output (5-V tolerant)
MII1_COL	R10	Input
V _{SSSYN}	E5	PLL analog GND
V _{SSSYN1}	F6	PLL analog GND
V _{DDSYN}	E6	PLL analog V _{DD}
GND	H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10, L11, U15	Power
V _{DDL}	F7, F8, F9, F10, F11, H6, H13, J6, J13, K6, K13, L6, L13, N7, N8, N9, N10, N11	Power
V _{DDH}	G7, G8, G9, G10, G11, G12, H7, H12, J7, J12, K7, K12, L7, L12, M7, M8, M9, M10, M11, M12	Power
N/C	B17, T16, U2, U17	No connect

Table 36. Pin Assignments—JEDEC Standard (continued)

Revision Number	Date	Changes
3.0	1/07/2004 7/19/2004	 Added sentence to Spec B1A about EXTCLK and CLKOUT being in alignment for integer values. Added a footnote to Spec 41 specifying that EDM = 1. Added the thermal numbers to Table 4. Added RMII1_EN under M1II_EN in Table 36, Pin Assignments. Added a table footnote to Table 6, DC Electrical Specifications, about meeting the V_{IL} Max of the I²C Standard. Put the new part numbers in the Ordering Information Section.
4	08/2007	 Updated template. On page 1, updated first paragraph and added a second paragraph. After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and renumbered the rest of the figures. In Table 10, for reset timings B29f and B29g added footnote indicating that the formula only applies to bus operation up to 50 MHz. In Figure 5, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level. In Table 18, changed num 46 description to read, "TA assertion to rising edge"