

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

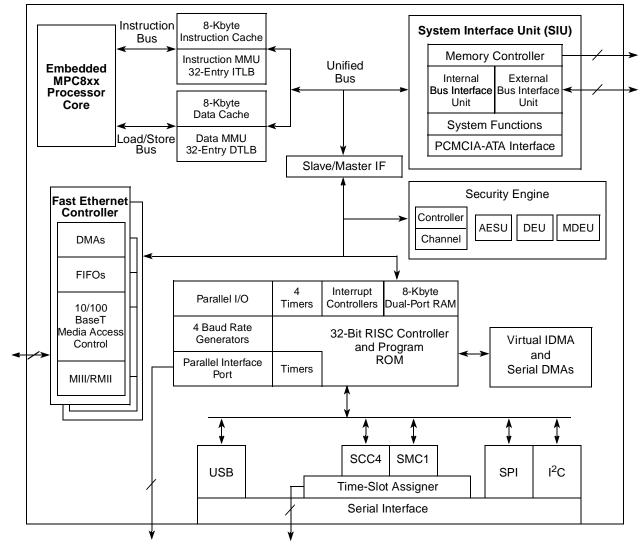
E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc870zt66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features


- ECB, CBC, and counter modes
- 128-, 192-, and 256-bit key lengths
- Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Master/slave logic, with DMA
 - 32-bit address/32-bit data
 - Operation at MPC8xx bus frequency
- Crypto-channel supporting multi-command descriptors
 - Integrated controller managing crypto-execution units
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Interrupts
 - Six external interrupt request (IRQ) lines
 - Twelve port pins with interrupt capability
 - Twenty-three internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - 8-Kbytes of dual-port RAM
 - Several serial DMA (SDMA) channels to support the CPM
 - Three parallel I/O registers with open-drain capability
- On-chip 16×16 multiply accumulate controller (MAC)
 - One operation per clock (two-clock latency, one-clock blockage)
 - MAC operates concurrently with other instructions
 - FIR loop—Four clocks per four multiplies
- Four baud-rate generators
 - Independent (can be connected to SCC or SMC)
 - Allows changes during operation
 - Autobaud support option
- SCC (serial communication controller)
 - Ethernet/IEEE 802.3® standard, supporting full 10-Mbps operation
 - HDLC/SDLC

Features

- The MPC875 has a time-slot assigner (TSA) that supports one TDM bus (TDMb)
 - Allows SCC and SMC to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - Can be internally connected to two serial channels (one SCC and one SMC)
- PCMCIA interface
 - Master (socket) interface, release 2.1-compliant
 - Supports one independent PCMCIA socket on the MPC875/MPC870
 - Eight memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: = \neq < >
 - Each watchpoint can generate a break point internally
- Normal high and normal low power modes to conserve power
- 1.8-V core and 3.3-V I/O operation with 5-V TTL compatibility
- The MPC875/MPC870 comes in a 256-pin ball grid array (PBGA) package

The MPC875 block diagram is shown in Figure 1.

Figure 1. MPC875 Block Diagram

11 Bus Signal Timing

The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.

Part Frequency	66 I	MHz	80 MHz	
Tart requency	Min	Мах	Min	Мах
Core frequency	40	66.67	40	80
Bus frequency	40	66.67	40	80

Table 8. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 9. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Frequency	66 MHz		80 MHz		133 MHz	
Part Frequency	Min	Max	Min	Мах	Min	Max
Core frequency	40	66.67	40	80	40	133
Bus frequency	20	33.33	20	40	20	66

Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.

The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay

Table 10. Bus Operation Timings

Num	Characteristic	33	33 MHz		40 MHz		MHz	80 MHz		Unit
Num		Min	Мах	Min	Max	Min	Max	Min	Max	Omt
B1	Bus period (CLKOUT), see Table 8	_	—	—	—	_		—	—	ns
B1a	EXTCLK to CLKOUT phase skew—If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1		1	_	1	ns
B1c	Frequency jitter on EXTCLK	_	0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \ge 15 MHz		4	—	4		4	—	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz		5		5		5		5	ns

Bus Signal Timing

Num	Characteristic		MHz	40 I	MHz	66	66 MHz 80		MHz	Unit
num	Characteristic	Min	Max	Min	Мах	Min	Мах	Min	Мах	Unit
B2	CLKOUT pulse width low (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B3	CLKOUT pulse width high (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B4	CLKOUT rise time		4.00	—	4.00	_	4.00	_	4.00	ns
B5	CLKOUT fall time	_	4.00	—	4.00	_	4.00	—	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/ \overline{WR} , BURST, D(0:31) output hold (MIN = 0.25 × B1)	7.60	—	6.30	—	3.80	—	3.13	—	ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, $\overline{\text{BDIP}}$, PTR output hold (MIN = 0.25 × B1)	7.60	—	6.30	—	3.80	—	3.13	—	ns
B7b	$\begin{array}{l} CLKOUT to \ \overline{BR}, \ \overline{BG}, \ FRZ, \ VFLS(0:1), \ VF(0:2) \\ IWP(0:2), \ LWP(0:1), \ \overline{STS} \ output \ hold \\ (MIN = 0.25 \times B1) \end{array}$	7.60	—	6.30	—	3.80	_	3.13	—	ns
B8	CLKOUT to A(0:31), BADDR(28:30), RD/ \overline{WR} , BURST, D(0:31) valid (MAX = 0.25 × B1 + 6.3)	_	13.80	—	12.50	—	10.00	—	9.43	ns
B8a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, $\overline{\text{BDIP}}$, PTR valid (MAX = 0.25 × B1 + 6.3)	_	13.80	—	12.50	—	10.00	—	9.43	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} valid ² (MAX = 0.25 × B1 + 6.3)	_	13.80	—	12.50	—	10.00	—	9.43	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), TSIZ(0:1), REG, RSV, PTR High-Z (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 × B1 + 6.0)	7.60	13.60	6.30	12.30	3.80	9.80	3.13	9.13	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = $0.00 \times B1 + 9.30^{1}$)	2.50	9.30	2.50	9.30	2.50	9.80	2.5	9.3	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 × B1 + 4.8)	7.60	12.30	6.30	11.00	3.80	8.50	3.13	7.92	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = $0.00 \times B1 + 9.00$)	2.50	9.00	2.50	9.00	2.50	9.00	2.5	9.00	ns
B13	CLKOUT to $\overline{\text{TS}}$, $\overline{\text{BB}}$ High-Z (MIN = 0.25 × B1)	7.60	21.60	6.30	20.30	3.80	14.00	3.13	12.93	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = $0.00 \times B1 + 2.5$)	2.50	15.00	2.50	15.00	2.50	15.00	2.5	15.00	ns
B14	CLKOUT to $\overline{\text{TEA}}$ assertion (MAX = $0.00 \times \text{B1} + 9.00$)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns

Table 10. Bus Operation Timings (continued)

		33	MHz	40 M	MHz	66	MHz	80 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B29d	$\label{eq:weight} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31) \mbox{ High-Z} \\ GPCM \mbox{ write access, } TRLX = 1, \mbox{ CSNT} = 1, \\ EBDF = 0 \mbox{ (MIN} = 1.50 \times B1 - 2.00) \\ \hline \hline \end{tabular}$	43.50		35.50		20.70		16.75		ns
B29e	\overline{CS} negated to D(0:31) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MIN = 1.50 × B1 - 2.00)	43.50	_	35.50		20.70	_	16.75	_	ns
B29f	$\label{eq:weighted_states} \hline \hline WE(0:3/BS_B[0:3]) \ \text{negated to } D(0:31) \ \text{High-Z} \\ \text{GPCM write access, } TRLX = 0, \ \text{CSNT} = 1, \\ \text{EBDF} = 1 \ (\text{MIN} = 0.375 \times \text{B1} - 6.30)^7 \\ \hline \hline \end{array}$	5.00		3.00		0.00		0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 6.30) ⁷	5.00	_	3.00	_	0.00	_	0.00	_	ns
B29h	$\label{eq:weighted} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31) \mbox{ High-Z} \\ GPCM \mbox{ write access, } TRLX = 1, \mbox{ CSNT = 1,} \\ EBDF = 1 \mbox{ (MIN = } 0.375 \times B1 - 3.30) \\ \hline \hline \end{tabular}$	38.40	_	31.10	_	17.50	_	13.85	_	ns
B29i	\overline{CS} negated to D(0:31) (0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 3.30)	38.40	_	31.10	_	17.50	_	13.85	_	ns
B30	$\overline{\text{CS}}$, $\overline{\text{WE}}(0:3)/\text{BS}_{B}[0:3]$ negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁸ (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30		1.80	_	1.13	_	ns
B30a	$\label{eq:weighted_states} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } A(0:31), \\ BADDR(28:30) \mbox{ invalid GPCM, write access,} \\ TRLX = 0, \mbox{ CSNT = 1, } \hline CS \mbox{ negated to } A(0:31), \\ \mbox{ invalid GPCM write access } TRLX = 0, \\ CSNT = 1, \mbox{ ACS = 10 or } ACS == 11, \mbox{ EBDF = 0} \\ (MIN = 0.50 \times B1 - 2.00) \\ \hline \hline \hline \hline \end{tabular}$	13.20	_	10.50		5.60	_	4.25	_	ns
B30b	$eq:weighted_$	43.50	_	35.50		20.70	_	16.75	_	ns
B30c	$eq:weighted_$	8.40	_	6.40	_	2.70	_	1.70	_	ns

Table 10. Bus Operation Timings (continued)

Bus Signal Timing

Table 10. Bus	Operation	Timings	(continued)
---------------	-----------	---------	-------------

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		Unit
	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	onit
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation (MAX = TBD)	—	TBD	_	TBD	_	TBD	_	TBD	ns

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC875/MPC870 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC875/MPC870 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ This formula applies to bus operation up to 50 MHz.

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 23.

Figure 16 through Figure 18 provide the timing for the external bus write controlled by various GPCM factors.


```
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)
```


1

Table 11 provides the interrupt timing for the MPC875/MPC870.

Table 11. Interrupt Timing	
----------------------------	--

Num	Characteristic ¹	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4 × T _{CLOCKOUT}		—

The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC875/MPC870 is able to support.

Figure 25 provides the interrupt detection timing for the external level-sensitive lines.

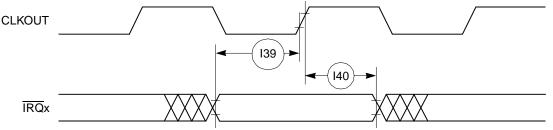


Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.

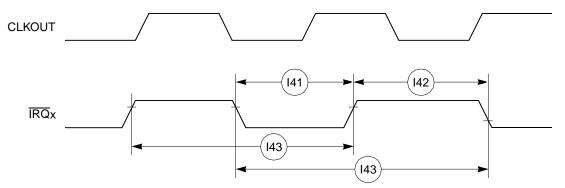
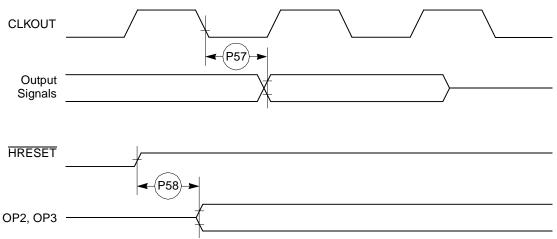


Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines


Table 13 shows the PCMCIA port timing for the MPC875/MPC870.

33 MHz 40 MHz 66 MHz 80 MHz Num Characteristic Unit Min Max Min Max Min Max Min Max CLKOUT to OPx valid 19.00 19.00 19.00 19.00 ____ ____ ____ ns P57 $(MAX = 0.00 \times B1 + 19.00)$ HRESET negated to OPx drive¹ 25.70 21.70 14.40 12.40 ns ____ ____ ____ ____ P58 $(MIN = 0.75 \times B1 + 3.00)$ IP_Xx valid to CLKOUT rising edge 5.00 5.00 5.00 5.00 ____ ____ ns P59 $(MIN = 0.00 \times B1 + 5.00)$ CLKOUT rising edge to IP_Xx invalid 1.00 1.00 1.00 1.00 ns ____ P60 $(MIN = 0.00 \times B1 + 1.00)$

Table 13. PCMCIA Port Timing

OP2 and OP3 only.

Figure 30 provides the PCMCIA output port timing for the MPC875/MPC870.

Figure 30. PCMCIA Output Port Timing

Figure 31 provides the PCMCIA input port timing for the MPC875/MPC870.

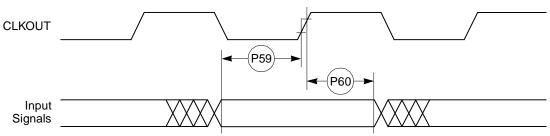


Figure 31. PCMCIA Input Port Timing

13 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC875/MPC870.

13.1 Port C Interrupt AC Electrical Specifications

Table 17 provides the timings for Port C interrupts.

Table	17.	Port C	Interrupt	Timing
-------	-----	--------	-----------	--------

Num Characte	Characteristic	33.34	MHz	Unit
Num	onaracteristic	Min	Мах	Onic
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns
36	Port C interrupt minimum time between active edges	55	_	ns

Figure 41 shows the Port C interrupt detection timing.

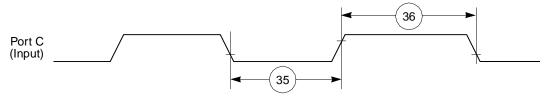


Figure 41. Port C Interrupt Detection Timing

13.2 IDMA Controller AC Electrical Specifications

Table 18 provides the IDMA controller timings as shown in Figure 42 through Figure 45.

Table 18. IDMA Controller Timing

Num	Characteristic	All Freq	uencies	s Unit	
Nulli	Characteristic	Min	Max	Unit	
40	DREQ setup time to clock high	7	_	ns	
41	DREQ hold time from clock high ¹	TBD	_	ns	
42	SDACK assertion delay from clock high	_	12	ns	
43	SDACK negation delay from clock low	_	12	ns	
44	SDACK negation delay from TA low	_	20	ns	
45	SDACK negation delay from clock high	_	15	ns	
46	\overline{TA} assertion to rising edge of the clock setup time (applies to external \overline{TA})	7	_	ns	

¹ Applies to high-to-low mode (EDM = 1).

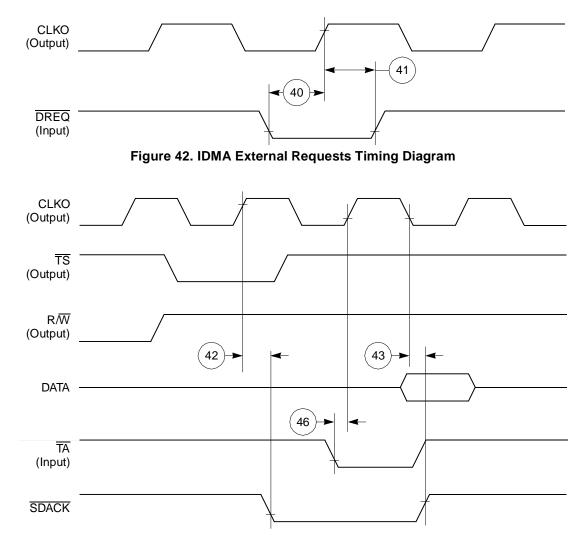


Figure 43. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

13.3 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 46.

Table 19. Baud Rate Generator Timing

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Max	Onit
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

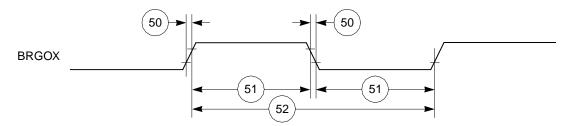


Figure 46. Baud Rate Generator Timing Diagram

13.4 Timer AC Electrical Specifications

Table 20 provides the general-purpose timer timings as shown in Figure 47.

Table	20.	Timer	Timing
-------	-----	-------	--------

Num	Characteristic	All Frequencies	Unit	
	Characteristic	Min	Мах	Unit
61	TIN/TGATE rise and fall time	10	_	ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	—	clk
65	CLKO low to TOUT valid	3	25	ns

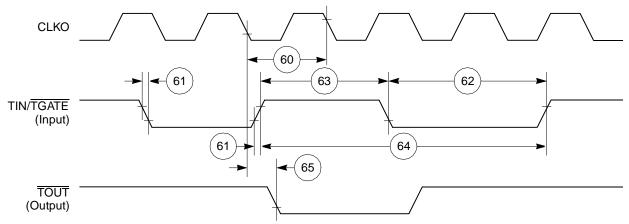
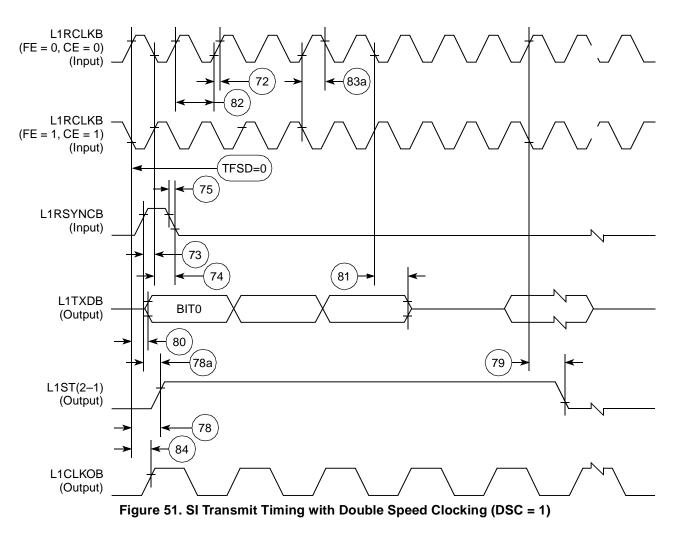


Figure 47. CPM General-Purpose Timers Timing Diagram

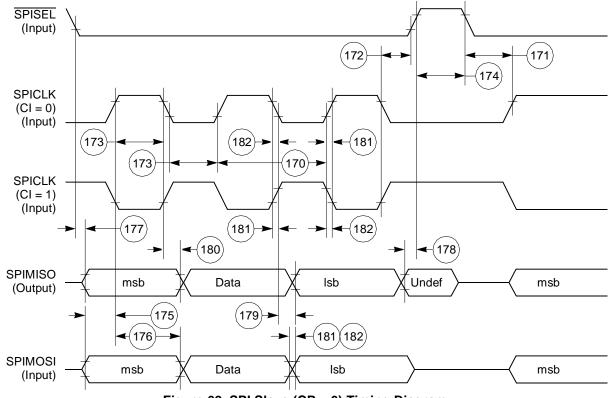
13.5 Serial Interface AC Electrical Specifications


Table 21 provides the serial interface (SI) timings as shown in Figure 48 through Figure 52.

Num	Characteristic	All Fre	All Frequencies	
Num	Characteristic	Min	Мах	Unit
70	L1RCLKB, L1TCLKB frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2.5	MHz
71	L1RCLKB, L1TCLKB width low $(DSC = 0)^2$	P + 10	—	ns
71a	L1RCLKB, L1TCLKB width high $(DSC = 0)^3$	P + 10		ns
72	L1TXDB, L1ST1 and L1ST2, L1RQ, L1CLKO rise/fall time	_	15.00	ns
73	L1RSYNCB, L1TSYNCB valid to L1CLKB edge (SYNC setup time)	20.00		ns
74	L1CLKB edge to L1RSYNCB, L1TSYNCB, invalid (SYNC hold time)	35.00		ns
75	L1RSYNCB, L1TSYNCB rise/fall time	—	15.00	ns
76	L1RXDB valid to L1CLKB edge (L1RXDB setup time)	17.00		ns
77	L1CLKB edge to L1RXDB invalid (L1RXDB hold time)	13.00	—	ns
78	L1CLKB edge to L1ST1 and L1ST2 valid ⁴	10.00	45.00	ns
78A	L1SYNCB valid to L1ST1 and L1ST2 valid	10.00	45.00	ns
79	L1CLKB edge to L1ST1 and L1ST2 invalid	10.00	45.00	ns
80	L1CLKB edge to L1TXDB valid	10.00	55.00	ns
80A	L1TSYNCB valid to L1TXDB valid ⁴	10.00	55.00	ns
81	L1CLKB edge to L1TXDB high impedance	0.00	42.00	ns
82	L1RCLKB, L1TCLKB frequency (DSC = 1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLKB, L1TCLKB width low (DSC = 1)	P + 10	—	ns

Table 21. SI Timing

CPM Electrical Characteristics



13.10 SPI Slave AC Electrical Specifications

Table 27 provides the SPI slave timings as shown in Figure 62 and Figure 63.

Table 27. SPI Slave Timing

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Мах	Unit
170	Slave cycle time	2	—	t _{cyc}
171	Slave enable lead time	15	—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time	_	50	ns

14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 30 lists the USB interface timings.

Table 30. USB Interface AC Timing Specifications

Name	Characteristic	All Frequencies		Unit
		Min	Max	
US1	USBCLK frequency of operation ¹ Low speed Full speed	6 48		MHz
US4	USBCLK duty cycle (measured at 1.5 V)	45	55	%

¹ USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

15 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%.

Table 31 provides information on the MII receive signal timing.

Num	Characteristic	Min	Мах	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period
M1_RMII	RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup	4		ns
M2_RMII	RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold	2		ns

Table 31. MII Receive Signal Timing

Figure 65 shows MII receive signal timing.

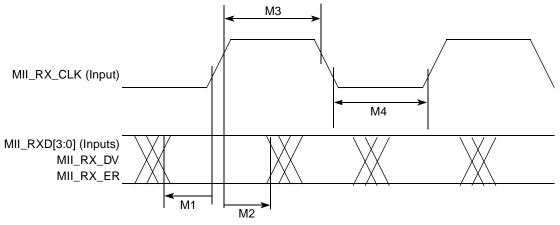


Figure 65. MII Receive Signal Timing Diagram

15.2 MII and Reduced MII Transmit Signal Timing

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency -1%.

Table 32 provides information on the MII transmit signal timing.

Table 32. M	III Transmit	Signal Timing
-------------	--------------	---------------

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid		25	ns
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period
M20_RMII	RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup	4	_	ns
M21_RMII	RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising edge	2	_	ns

Figure 66 shows the MII transmit signal timing diagram.

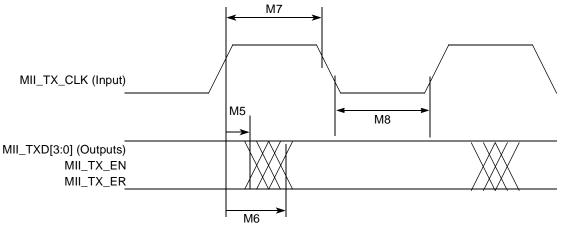


Figure 66. MII Transmit Signal Timing Diagram

15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 33 provides information on the MII async inputs signal timing.

Table 33. MII Async Inputs Signal Timing

Nu	Characteristic	Min	Max	Unit
M	MII_CRS, MII_COL minimum pulse width	1.5	—	MII_TX_CLK period

Figure 67 shows the MII asynchronous inputs signal timing diagram.

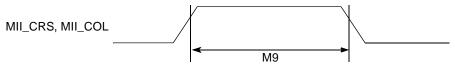


Figure 67. MII Async Inputs Timing Diagram

15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 34 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz.

Table 34. MII Serial Management Channel Tir	ning
---	------

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	—	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Name	Pin Number	Туре
IP_A6	F4	Input (3.3 V only)
IP_A7	C2	Input (3.3 V only)
ALE_B, DSCK	C8	Bidirectional Three-state (3.3 V only)
IP_B[0:1], IWP[0:1], VFLS[0:1]	B8, D9	Bidirectional (3.3 V only)
OP0	B6	Bidirectional (3.3 V only)
OP1	C6	Output
OP2, MODCK1, STS	B5	Bidirectional (3.3 V only)
OP3, MODCK2, DSDO	B2	Bidirectional (3.3 V only)
BADDR[28:29]	E8, C5	Output
BADDR30, REG	D8	Output
ĀS	C7	Input (3.3 V only)
PA15, USBRXD	P14	Bidirectional
PA14, USBOE	U16	Bidirectional (Optional: open-drain)
PA11, RXD4, MII1-TXD0, RMII1-TXD0	R9	Bidirectional (Optional: open-drain) (5-V tolerant)
PA10, MII1-TXERR, TIN4, CLK7	R12	Bidirectional (Optional: open-drain) (5-V tolerant)
PA7, CLK1, BRGO1, TIN1	R11	Bidirectional
PA6, CLK2, TOUT1	P11	Bidirectional
PA4, CTS4, MII1-TXD1, RMII-TXD1	P7	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	R5	Bidirectional (5-V tolerant)
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	N6	Bidirectional (5-V tolerant)
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	Τ4	Bidirectional (5-V tolerant)
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	P6	Bidirectional (5-V tolerant)
PB31, <u>SPISEL</u> , MII1-TXCLK, RMII1-REFCLK	Т5	Bidirectional (Optional: open-drain) (5-V tolerant)

Table 36. Pin Assignments—JEDEC Standard (continued)