

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	Cryptography
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc875czt66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC875/MPC870. Table 2 displays the maximum tolerated ratings and Table 3 displays the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	V _{DDL} (core voltage)	-0.3 to 3.4	V
	V _{DDH} (I/O voltage)	–0.3 to 4	V
	V _{DDSYN}	-0.3 to 3.4	V
	Difference between V_{DDL} and V_{DDSYN}	<100	mV
Input voltage ²	V _{in}	$GND-0.3$ to V_{DDH}	V
Storage temperature range	T _{stg}	-55 to +150	°C

Table 2. Maximum Tolerated Ratings

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V_{DDH}. This restriction applies to power up and normal operation (that is, if the MPC875/MPC870 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC875/MPC870.

Figure 3. Undershoot/Overshoot Voltage for V_{DDH} and V_{DDL}

Layout Practices

Register/Configuration	Field	Value (Binary)
PADIR (Port A data direction register)	PADIR[5:9] PADIR[12:13]	0
PBPAR (Port B pin assignment register)	PBPAR[14:18] PBPAR[20:22]	0
PBDIR (Port B data direction register)	PBDIR[14:8] PBDIR[20:22]	0
PCPAR (Port C pin assignment register)	PCPAR[4:5] PCPAR[8:9] PCPAR[14]	0
PCDIR (Port C data direction register)	PCDIR[4:5] PCDIR[8:9] PCDIR[14]	0
PDPAR (Port D pin assignment register)	PDPAR[3:7] PDPAR[9:5]	0
PDDIR (Port D data direction register)	PDDIR[3:7] PDDIR[9:15]	0

Table 7. Mandatory Reset Configuration of MPC875/MPC870 (continued)

10 Layout Practices

Each V_{DD} pin on the MPC875/MPC870 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1-µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC875/MPC870 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, refer to Section 14.4.3, "Clock Synthesizer Power (V_{DDSYN} , V_{SSSYN} , V_{SSSYN1})," in the *MPC885 PowerQUICC*TM *Family Reference Manual*.

Bus Signal Timing

Num	Num Characteristic –		33 MHz		40 MHz		66 MHz		80 MHz	
NUM			Мах	Min	Мах	Min	Max	Min	Max	Unit
B2	CLKOUT pulse width low (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B3	CLKOUT pulse width high (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B4	CLKOUT rise time		4.00	_	4.00		4.00	_	4.00	ns
B5	CLKOUT fall time		4.00		4.00		4.00	_	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/ \overline{WR} , BURST, D(0:31) output hold (MIN = 0.25 × B1)		_	6.30	_	3.80	_	3.13	_	ns
B7a	CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR output hold (MIN = 0.25 × B1)		—	6.30	—	3.80	—	3.13	—	ns
B7b	b CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), STS output hold (MIN = $0.25 \times B1$)		_	6.30	—	3.80	_	3.13	_	ns
B8	CLKOUT to A(0:31), BADDR(28:30), RD/ \overline{WR} , BURST, D(0:31) valid (MAX = 0.25 × B1 + 6.3)		13.80	_	12.50		10.00	_	9.43	ns
B8a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, $\overline{\text{BDIP}}$, PTR valid (MAX = 0.25 × B1 + 6.3)		13.80	—	12.50	_	10.00	—	9.43	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} valid ² (MAX = 0.25 × B1 + 6.3)		13.80	_	12.50		10.00	_	9.43	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), TSIZ(0:1), REG, RSV, PTR High-Z (MAX = 0.25 × B1 + 6.3)		13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 × B1 + 6.0)	7.60	13.60	6.30	12.30	3.80	9.80	3.13	9.13	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = $0.00 \times B1 + 9.30^{1}$)	2.50	9.30	2.50	9.30	2.50	9.80	2.5	9.3	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 × B1 + 4.8)	7.60	12.30	6.30	11.00	3.80	8.50	3.13	7.92	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 × B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.5	9.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} High-Z (MIN = 0.25 × B1)	7.60	21.60	6.30	20.30	3.80	14.00	3.13	12.93	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 × B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.5	15.00	ns
B14	CLKOUT to $\overline{\text{TEA}}$ assertion (MAX = 0.00 × B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns

Table 10. Bus Operation Timings (continued)

Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Bus Signal Timing

Table 12 shows the PCMCIA timing for the MPC875/MPC870.

Table 12. PCMCIA Timing

Num	Characteristic	33	MHz	40 MHz		66 MHz		80 MHz		Unit
Nulli			Max	Min	Max	Min	Max	Min	Max	Unit
P44	P44 A(0:31), $\overline{\text{REG}}$ valid to PCMCIA strobe asserted ¹ (MIN = 0.75 × B1 - 2.00)		_	16.70	_	9.40	—	7.40	—	ns
P45	P45 $A(0:31), \overline{\text{REG}} \text{ valid to ALE negation}^1$ (MIN = 1.00 × B1 – 2.00)		_	23.00	_	13.20	_	10.50	_	ns
P46	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P47	P47 CLKOUT to $\overline{\text{REG}}$ invalid (MIN = 0.25 × B1 + 1.00)		_	7.30	_	4.80	_	4.125	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P50	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} assert time (MAX = 0.00 × B1 + 11.00)	—	11.00	—	11.00	_	11.00	_	11.00	ns
P51	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} negate time (MAX = 0.00 × B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time $(MAX = 0.25 \times B1 + 6.30)$	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.40	ns
P53	CLKOUT to ALE negate time $(MAX = 0.25 \times B1 + 8.00)$	_	15.60	—	14.30	_	11.80	_	11.13	ns
P54	PCWE, $\overline{\text{IOWR}}$ negated to D(0:31) invalid ¹ (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	—	1.80	—	1.125	—	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge ¹ (MIN = 0.00 × B1 + 8.00)	8.00	_	8.00	—	8.00	—	8.00	—	ns
P56	CLKOUT rising edge to \overline{WAITA} and \overline{WAITB} invalid ¹ (MIN = 0.00 × B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAITA signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITA assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16, "PCMCIA Interface," in the *MPC885 PowerQUICC™ Family Reference Manual*.

IEEE 1149.1 Electrical Specifications

Figure 40. Boundary Scan (JTAG) Timing Diagram

Figure 45. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

Num	Characteristic	All Fre	Unit	
Num	Characteristic	Min	Мах	Unit
83a	L1RCLKB, L1TCLKB width high (DSC = 1) ³	P + 10	_	ns
84 L1CLKB edge to L1CLKOB valid (DSC = 1)		—	30.00	ns
85 L1RQB valid before falling edge of L1TSYNCB ⁴		1.00	—	L1TCLK
86 L1GRB setup time ²		42.00	—	ns
87	L1GRB hold time	42.00	—	ns
88	L1CLKB edge to L1SYNCB valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 21. SI Timing (continued)

¹ The ratio SYNCCLK/L1RCLKB must be greater than 2.5/1.

² These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after the L1CLKB edge or L1SYNCB, whichever comes later.

CPM Electrical Characteristics

Figure 55. HDLC Bus Timing Diagram

13.7 Ethernet Electrical Specifications

Table 24 provides the Ethernet timings as shown in Figure 56 through Figure 58.

Table 24. Ethernet Timing

Num	Characteristic		All Frequencies		
Nulli			Мах	Unit	
120	120 CLSN width high		_	ns	
121	RCLK3 rise/fall time	—	15	ns	
122	RCLK3 width low	40	_	ns	
123	RCLK3 clock period ¹	80	120	ns	
124	24 RXD3 setup time		_	ns	
125	25 RXD3 hold time		_	ns	
126	126 RENA active delay (from RCLK3 rising edge of the last data bit)		_	ns	
127	27 RENA width low		_	ns	
128	TCLK3 rise/fall time	—	15	ns	
129	TCLK3 width low	40	_	ns	
130	TCLK3 clock period ¹	99	101	ns	
131	TXD3 active delay (from TCLK3 rising edge)	_	50	ns	
132	132 TXD3 inactive delay (from TCLK3 rising edge) 6.5		50	ns	
133	TENA active delay (from TCLK3 rising edge)		50	ns	
134	TENA inactive delay (from TCLK3 rising edge)	10	50	ns	

Figure 65 shows MII receive signal timing.

Figure 65. MII Receive Signal Timing Diagram

15.2 MII and Reduced MII Transmit Signal Timing

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency -1%.

Table 32 provides information on the MII transmit signal timing.

Table 3	2. MII	Transmit	Signal	Timing
---------	--------	----------	--------	--------

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	—	25	ns
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period
M20_RMII	RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup	4	_	ns
M21_RMII	RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising edge	2	_	ns

16.1 Pin Assignments

Figure 69 shows the JEDEC pinout of the PBGA package as viewed from the top surface. For additional information, see the *MPC885 PowerQUICC Family User's Manual*.

NOTE

The pin numbering starts with B2 in order to conform to the JEDEC standard for 23-mm body size using a 16×16 array.

2 7 8 9 10 11 12 13 14 3 4 5 6 15 16 17 O O O O EXTCLK MODCK1 \bigcup_{ALEA} \bigcirc CS3 O N/C в Ο O OP0 $O_{\overline{CS5}}$ MODCK2 $\bigcirc_{\overline{BB}}$ $\bigcup_{\overline{TS}}$ $\bigcup_{\overline{TA}}$ O_{CS2} С \bigcirc \cap О \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc CE1A RSTCONF SRESET BADDR29 OP1 ALEB IRQ2 BDIP GPLAB3 GPLA0 IPA7 D \bigcirc \bigcirc Ο IPA2 WAITA PORESET XTAL EXTAL BADDR30 IPB1 BG GPLA4 GPLA5 $\overline{\mathsf{WR}}$ CE2A CS7 WE2 WE1 IPA4 Е Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc О Ο Ο Ο Ο Ο HRESET BADDR28 IRQ4 CS1 GPLB4 CS4 GPLAB2 BSA1 BSA2 **IRQ3 WEO** D31 IPA5 IPA3 VSSSYN VDDSYN F Ο \bigcirc \bigcirc \bigcirc O_{CS6} Ο Ο O \bigcirc O Ο \bigcirc \bigcirc O Ο Ο BSAO BSA3 D30 IPA6 IPA1 VSSSYN VDDL VDDL OE TSIZ0 A31 D29 G \bigcirc Ο Ο \bigcirc Ο \bigcirc O VDDH \bigcirc \bigcirc O VDDH \bigcirc Ο \bigcirc \bigcirc Ο Ο D28 CLKOUT IPA0 WE3 TSI71 A22 D7 D26 A26 A18 н Ο Ο Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc Ο \bigcirc Ο Ο D22 D6 D24 D25 VDDL VDDH GND VDDH VDDL A28 A30 A25 A24 O D20 O D21 () A20 O A29 J Ο \bigcirc \bigcirc Ο Ο \bigcirc \bigcirc O A23 O A21 Ο Ο \bigcirc D19 D18 GND Κ Ο Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο Ο Ο 0 Ο Ο \bigcirc \bigcirc D15 D16 D14 VDDL GND VDDL D5 A14 A19 A27 A17 O D2 O A12 L \bigcirc Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ο D27 DO A15 A10 A16 D3 O VDDH () A8 Μ \bigcirc Ο Ο Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc \bigcirc Ο A11 **IRQ0** MII_MDIO A2 A13 D11 D9 D12 PE18 0 0 \bigcirc 0 \bigcirc \bigcirc Ο \bigcirc \bigcirc 0 Ν \bigcirc 0 Ο \bigcirc Ο \bigcirc D13 IRQ7 PA2 VDDL VDDL PB26 PB27 A1 A6 A7 D10 D1 A9 \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc Ο \bigcirc Р Ο \bigcirc Ο \bigcirc \bigcirc PE14 PE31 D23 D17 PE22 PA0 PA4 PC6 PA6 PC11 TDO PA15 A3 Α5 R О O Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc O PB28 O PC15 \bigcirc_{A0} \bigcirc PE19 PE28 PE30 PA11 MII_COL PA7 PA10 тск PB29 PE25 PA3 D4 D8 \bigcirc Ο Ο \bigcirc Ο \bigcirc \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc т \bigcirc Ο \bigcirc PD8 PB31 PE27 PE17 PE21 PC7 PB19 PC12 N/C PB30 PE26 PA1 PE15 PB24 TDI TMS U O PE20 O PE23 MII-TX-EN PE16 O PE29 O PE24 O PC13 O MII-CRS O PC10 O PB23 O PB25 O PA14 O N/C

NOTE: This is the top view of the device.

Figure 69. Pinout of the PBGA Package—JEDEC Standard

Name	Pin Number	Туре
IP_A6	F4	Input (3.3 V only)
IP_A7	C2	Input (3.3 V only)
ALE_B, DSCK	C8	Bidirectional Three-state (3.3 V only)
IP_B[0:1], IWP[0:1], VFLS[0:1]	B8, D9	Bidirectional (3.3 V only)
OP0	B6	Bidirectional (3.3 V only)
OP1	C6	Output
OP2, MODCK1, STS	B5	Bidirectional (3.3 V only)
OP3, MODCK2, DSDO	B2	Bidirectional (3.3 V only)
BADDR[28:29]	E8, C5	Output
BADDR30, REG	D8	Output
ĀS	C7	Input (3.3 V only)
PA15, USBRXD	P14	Bidirectional
PA14, USBOE	U16	Bidirectional (Optional: open-drain)
PA11, RXD4, MII1-TXD0, RMII1-TXD0	R9	Bidirectional (Optional: open-drain) (5-V tolerant)
PA10, MII1-TXERR, TIN4, CLK7	R12	Bidirectional (Optional: open-drain) (5-V tolerant)
PA7, CLK1, BRGO1, TIN1	R11	Bidirectional
PA6, CLK2, TOUT1	P11	Bidirectional
PA4, CTS4, MII1-TXD1, RMII-TXD1	P7	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	R5	Bidirectional (5-V tolerant)
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	N6	Bidirectional (5-V tolerant)
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	Τ4	Bidirectional (5-V tolerant)
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	P6	Bidirectional (5-V tolerant)
PB31, SPISEL, MII1-TXCLK, RMII1-REFCLK	T5	Bidirectional (Optional: open-drain) (5-V tolerant)

Table 36. Pin Assignments—JEDEC Standard (continued)

Name	Pin Number	Туре
TDO, DSDO	P13	Output (5-V tolerant)
MII1_CRS	U10	Input
MII_MDIO	M13	Bidirectional (5-V tolerant)
MII1_TX_EN, RMII1_TX_EN	U5	Output (5-V tolerant)
MII1_COL	R10	Input
V _{SSSYN}	E5	PLL analog GND
V _{SSSYN1}	F6	PLL analog GND
V _{DDSYN}	E6	PLL analog V _{DD}
GND	H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10, L11, U15	Power
V _{DDL}	F7, F8, F9, F10, F11, H6, H13, J6, J13, K6, K13, L6, L13, N7, N8, N9, N10, N11	Power
V _{DDH}	G7, G8, G9, G10, G11, G12, H7, H12, J7, J12, K7, K12, L7, L12, M7, M8, M9, M10, M11, M12	Power
N/C	B17, T16, U2, U17	No connect

Table 36. Pin Assignments—JEDEC Standard (continued)

Document Revision History

17 Document Revision History

Table 37 lists significant changes between revisions of this hardware specification.

Table 37. Document Revision History

Revision Number	Date	Changes
0	2/2003	Initial release.
0.1	3/2003	Took out the time-slot assigner and changed the SCC for SCC3 to SCC4.
0.2	5/2003	Changed the package drawing, removed all references to Data Parity. Changed the SPI Master Timing Specs. 162 and 164. Added the RMII and USB timing. Added the 80-MHz timing.
0.3	5/2003	Made sure the pin types were correct. Changed the Features list to agree with the MPC885.
0.4	5/2003	Corrected the signals that had overlines on them. Made corrections on two pins that were typos.
0.5	5/2003	Changed the pin descriptions for PD8 and PD9.
0.6	5/2003	Changed a few typos. Put back the I^2C . Put in the new reset configuration, corrected the USB timing.
0.7	6/2003	Changed the pin descriptions per the June 22 spec, removed Utopia from the pin descriptions, changed PADIR, PBDIR, PCDIR and PDDIR to be 0 in the Mandatory Reset Config.
0.8	8/2003	Added the reference to USB 2.0 to the Features list and removed 1.1 from USB on the block diagrams.
0.9	8/2003	Changed the USB description to full-/low-speed compatible.
1.0	9/2003	Added the DSP information in the Features list. Put a new sentence under Mechanical Dimensions. Fixed table formatting. Nontechnical edits. Released to the external web.
1.1	10/2003	Added TDMb to the MPC875 Features list, the MPC875 Block Diagram, added 13.5 Serial Interface AC Electrical Specifications, and removed TDMa from the pin descriptions.
2.0	12/2003	Changed DBGC in the Mandatory Reset Configuration to X1. Changed the maximum operating frequency to 133 MHz. Put the timing in the 80 MHz column. Put in the orderable part numbers. Rounded the timings to hundredths in the 80 MHz column. Put the pin numbers in footnotes by the maximum currents in Table 6. Changed 22 and 41 in the Timing. Put TBD in the Thermal table.

Revision Number	Date	Changes
3.0	1/07/2004 7/19/2004	 Added sentence to Spec B1A about EXTCLK and CLKOUT being in alignment for integer values. Added a footnote to Spec 41 specifying that EDM = 1. Added the thermal numbers to Table 4. Added RMII1_EN under M1II_EN in Table 36, Pin Assignments. Added a table footnote to Table 6, DC Electrical Specifications, about meeting the V_{IL} Max of the I²C Standard. Put the new part numbers in the Ordering Information Section.
4	08/2007	 Updated template. On page 1, updated first paragraph and added a second paragraph. After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and renumbered the rest of the figures. In Table 10, for reset timings B29f and B29g added footnote indicating that the formula only applies to bus operation up to 50 MHz. In Figure 5, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level. In Table 18, changed num 46 description to read, "TA assertion to rising edge"

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK