

Welcome to E-XFL.COM

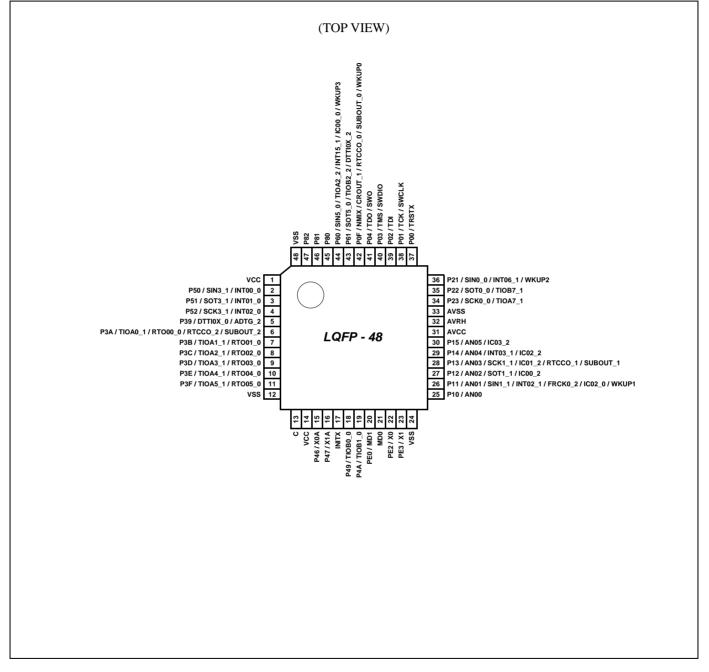
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSIO, I²C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/rochester-electronics/mb9af132kbpmc-g-sne2


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

FPT-48P-M49

Note:

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

	in No		I/O circuit	Pin state	
LQFP-64 QFN-64	LQFP-48 QFN-48	Pin name	type	type	
		P4C			
25	-	TIOB3_0	E	н	
		SCK7_1			
		(SCL7_1)			
		P4D			
26	-	TIOB4_0	E	Н	
		SOT7_1 (SDA7_1)			
		P4E			
		TIOB5_0			
27	-	 INT06_2	E	F	
		 SIN7_1			
		 PE0			
28	20	MD1	C	Р	
29	21	MD0	Н	D	
		PE2			
30	22	X0	Α	A	
		PE3		5	
31	23	X1	— A	В	
32	24	VSS	-		
33	-	VCC	-		
34	25	P10	F	J	
54	25	AN00	Г	J	
		P11			
		AN01			
		SIN1_1			
35	26	INT02_1	F	L	
		FRCK0_2			
		IC02_0			
		WKUP1			
		P12			
		AN02			
36	27	SOT1_1	F	J	
		(SDA1_1)			
		IC00_2			
		P13			
		AN03 SCK1_1			
37	28	(SCL1_1)	F	J	
		IC01_2	— ·	J	
		RTCCO_1			
		SUBOUT_1			
L					

Dim				Pin No		
Pin function	Pin name	Function description	LQFP-64 QFN-64	LQFP-48 QFN-48		
GPIO	P30		5	-		
	P31		6	-		
	P32		7	-		
	P33		8	-		
	P39		9	5		
	P3A	General-purpose I/O port 3	10	6		
	P3B		11	7		
	P3C		12	8		
	P3D		13	9		
	P3E		14	10		
	P3F		15	11		
	P46		19	15		
	P47		20	16		
	P49		22	18		
	P4A	Constal purpase I/O part 4	23	19		
	P4B	General-purpose I/O port 4	24	-		
	P4C		25	-		
	P4D		26	-		
	P4E		27	-		
	P50		2	2		
	P51	General-purpose I/O port 5	3	3		
	P52		4	4		
	P60		60	44		
	P61	General-purpose I/O port 6	59	43		
	P62		58	-		
	P80		61	45		
	P81	General-purpose I/O port 8	62	46		
	P82		63	47		
	PE0		28	20		
	PE2	General-purpose I/O port E	30	22		
	PE3		31	23		

7. Handling Devices

Power supply pins

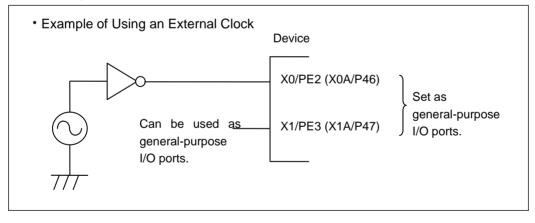
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μ F be connected as a bypass capacitor between each Power supply pins and GND pins, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Using an external clock

To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pins.

Handling when using Multi-function serial pin as I²C pin

If it is using the Multi-function serial pin as I²C pins, P-ch transistor of digital output is always disable. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to external I²C bus system with power OFF.

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

 $\blacksquare INITX = 0$

This is the period when the INITX pin is the L level.

■INITX = 1

This is the period when the INITX pin is the H level.

■SPL = 0

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to 0.

■SPL=1

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to 1.

■Input enabled

Indicates that the input function can be used.

■Internal input fixed at 0

This is the status that the input function cannot be used. Internal input is fixed at L.

■Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled

Indicates that the setting is disabled.

■Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

■Analog input is enabled

Indicates that the analog input is enabled.

■Trace output

Indicates that the trace function can be used.

■GPIO selected

In Deep Standby mode, pins switch to the general-purpose I/O port.

Pin status type	Function group	Power-o n reset or low voltage detection state	INITX input state	Device internal reset state	ernal Sleep RTC mode, mode or Deep state state state				or Deep Stop mode	Return from Deep Standby mode state
Pin sta	group	Power supply unstable	Power sta	ble	Power supply stable	sta	supply ble	Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT SPL = 0	X = 1 SPL = 1	INITX SPL = 0	X = 1 SPL = 1	INITX = 1
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog	Hi-Z / Internal	Hi-Z / Internal	Hi-Z / Internal input fixed at 0 / Analog	Hi-Z / Internal input fixed at 0 / Analog			
			input enabled	input enabled	input enabled	input enabled	input enabled Hi-Z /	input enabled	input enabled Hi-Z /	input enabled
L	WKUP enabled						Internal input fixed at 0	WKUP input enabled	WKUP input enabled	
	External interrupt enabled selected	disabled disabled disabled previous previ	Maintain previous	Maintain previous state	GPIO	Hi-Z /	GPIO selected			
	Resource other than above selected	alcabioa	alcabioa	state state state	state	Hi-Z / Internal input fixed	selected	Internal input fixed at 0		
	GPIO selected						at 0	Maintain previous state		Maintain previous state
	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
М	External sub clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state / When oscillation stop* ² , output maintain previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stop* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stop* ² , output maintain previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stop* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When Return from Deep Stand-by STOP mode, GPIO selected
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Output maintain previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Output maintain previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state

12. Electrical Characteristics

12.1 Absolute Maximum Ratings

Parameter	Symbol	F	Rating	Unit	Remarks
	Symbol	Min	Max	Unit	Rellia KS
Power supply voltage*1,*2	V _{cc}	V _{SS} - 0.5	V _{SS} + 6.5	V	
Analog power supply voltage*1,*3	AV _{CC}	V _{SS} - 0.5	V _{SS} + 6.5	V	
Analog reference voltage*1,*3	AVRH	V _{SS} - 0.5	V _{SS} + 6.5	V	
Input voltage*1	VI	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
		V _{SS} - 0.5	V _{SS} + 6.5	V	5V tolerant
Analog pin input voltage*1	VIA	V _{SS} - 0.5	AV _{CC} + 0.5 (≤ 6.5 V)	V	
Output voltage*1	Vo	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
L level maximum output current*4	IOL	-	10	mA	
L level average output current*5	I _{OLAV}	-	4	mA	
L level total maximum output current	∑I _{OL}	-	60	mA	
L level total average output current*6	∑I _{OLAV}	-	30	mA	
H level maximum output current*4	I _{OH}	-	-10	mA	
H level average output current*5	I _{OHAV}	-	- 4	mA	
H level total maximum output current	∑I _{ОН}	-	-60	mA	
H level total average output current*6	∑I _{OHAV}	-	-30	mA	
Power consumption	PD	-	400	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

*1: These parameters are based on the condition that $V_{SS} = AV_{SS} = 0.0$ V.

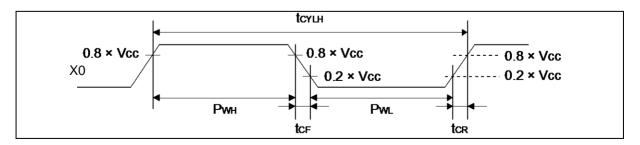
*2: V_{CC} must not drop below V_{SS} - 0.5 V.

- *3: Be careful not to exceed V_{CC} + 0.5 V, for example, when the power is turned on.
- *4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- *5: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.
- *6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

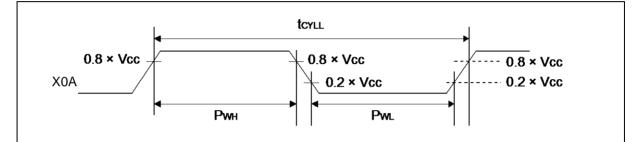
12.4 AC Characteristics


12.4.1 Main Clock Input Characteristics

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Deremeter	Symbol	Pin	Conditions	Va	lue	Unit	Domorko
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			V _{CC} ≥ 2.0 V	4	20	MHz	When crystal oscillator is
1	4		V _{CC} < 2.0 V	4	4	MHz	connected
Input frequency	f _{CH}		V _{CC} ≥ 4.5 V	4	20	MHz	When using external
			$V_{CC} < 4.5 V$	4	16	MHz	clock
	4	X0,	V _{CC} ≥ 4.5 V	50	250	ns	When using external
Input clock cycle	t _{CYLH}	X1	V _{CC} < 4.5 V	62.5	250	ns	clock
Input clock pulse width	-		Рwн/tсү∟н, Рw∟/tсү∟н	45	55	%	When using external clock
Input clock rise time and fall time	t _{CF} , t _{CR}		-	-	5	ns	When using external clock
	f _{CM}	-	-	-	20	MHz	Master clock
	f _{CC}	-	-	-	20	MHz	Base clock (HCLK/FCLK)
Internal operating clock*1	f _{CP0}	-	-	-	20	MHz	APB0 bus clock* ²
frequency	f _{CP1}	-	-	-	20	MHz	APB1 bus clock*2
	f _{CP2}	-	-	-	20	MHz	APB2 bus clock*2
	t _{cycc}	-	-	50	-	ns	Base clock (HCLK/FCLK)
Internal operating	t _{CYCP0}	-	-	50	-	ns	APB0 bus clock*2
clock* ¹ cycle time	t _{CYCP1}	-	-	50	-	ns	APB1 bus clock*2
	t _{CYCP2}	-	-	50	-	ns	APB2 bus clock*2

*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.


*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.

12.4.2 Sub Clock Input Characteristics

						(V _{CC}	= 1.8V	to 5.5V, $V_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$)
Parameter Symbol	Symbol	Pin	Condition		Value		Unit	Demeska
	name	me s Min Typ Max Onit		Remarks				
Input fraguanay	land the supervisit of		-	-	32.768	-	kHz	When crystal oscillator is connected
Input frequency	f _{CL}		-	32	-	100	kHz	When using external clock
Input clock cycle	t _{CYLL}	X0A, X1A	-	10	-	31.25	μs	When using external clock
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When using external clock

Built-in High-speed CR

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol		Conditions —		Value		Unit	Remarks	
Farameter	Symbol				Тур	Max	Unit		
		V _{CC} ≥ 2.2 V	T _A = + 25°C	3.92	4	4.08			
			T _A = - 40°C to + 85°C	3.8	4	4.2	MHz	When trimming* ¹	
	4		T _A = - 40°C to + 85°C	2.3	-	7.03		When not trimming	
Clock frequency	f _{CRH}	V _{CC} < 2.2 V	$T_{A} = + 25^{\circ}C$	3.4	4	4.6		When trimming* ¹	
			T _A = - 40°C to + 85°C	3.16	4	4.84	MHz		
			T _A = - 40°C to + 85°C	2.3	-	7.03		When not trimming	
Frequency stabilization time	t _{CRWT}	-		-	-	10	μs	*2	

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

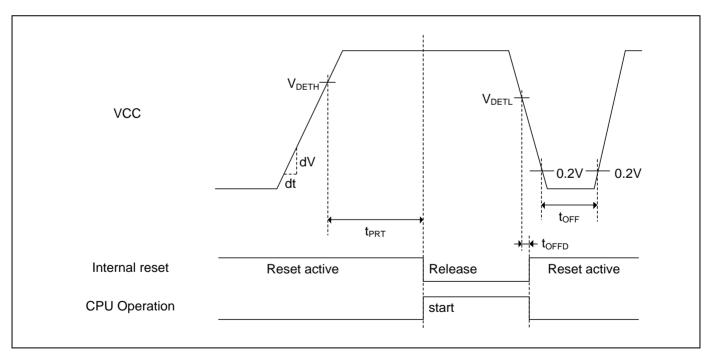
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock.

Built-in Low-speed CR

(V_{CC} = 1.8V to 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C to + 85°C)

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Farameter	Symbol	Conditions	Min	Тур	Max	Unit	Reliains	
Clock frequency	f _{CRL}	-	50	100	150	kHz		

12.4.6 Reset Input Characteristics


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol Pin		Conditions	Va	alue	Unit	Remarks	
Parameter Symbol		name		Min	Max			
Reset input time t _{INITX}	t _{INITX} INITX			500	-	ns		
		-	1.5	-	ms	When RTC mode or Stop mode		
				1.5	-	ms	When Deep Standby mode	

12.4.7 Power-on Reset Timing

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

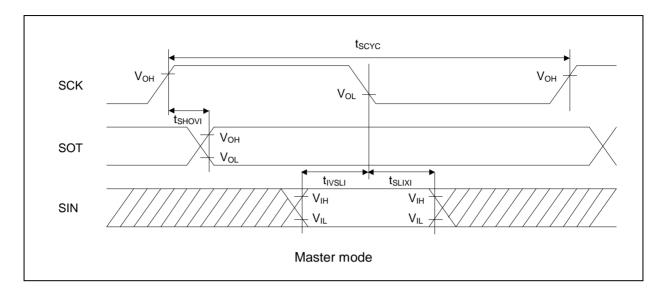
Parameter	Symbol	Pin	Value			Unit	Remarks
Faialletei	Symbol	name	Min	Тур	Мах	onit	Kemarks
Power supply rising time	dV/dt		0.1	-	-	V/ms	
Power supply shut down time	t _{OFF}		1	-	-	ms	
Reset release voltage	Vdeth		1.44	1.60	1.76	V	When voltage rises
Reset detection voltage	V _{DETL}	VCC	1.39	1.55	1.71	V	When voltage drops
Time until releasing Power-on reset	t _{PRT}		0.46	-	11.4	ms	dV/dt ≥ 0.1mV/µs
Reset detection delay time	t _{OFFD}		-	-	0.4	ms	dV/dt ≥ -0.04mV/µs

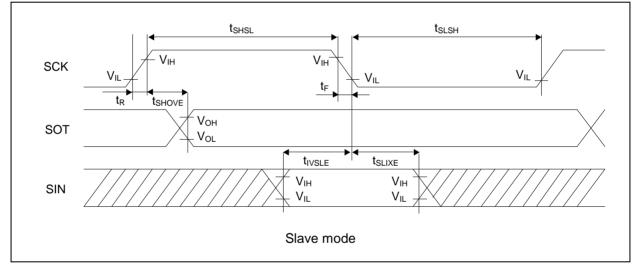
12.4.9 CSIO/UART Timing

CSIO (SPI = 0, SCINV = 0)

	$\lambda = - \lambda = - \lambda$	4000 (0500)
$(V_{CC} = 1.8V \text{ to } 5.5V)$, V _{SS} = OV, T _A =	-40° C to $+85^{\circ}$ C)

		Dim		V (27)		2.7 V ≤		N SAEN		
Parameter	Symbol	Pin name	Conditions	V _{CC} < 2.7 V		V _{CC} < 4.5 V		V _{cc} ≥ 4.5 V		Unit
				Min	Max	Min	Max	Min	Max	
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	4t _{CYCP}	-	ns
$\begin{array}{l} SCK \downarrow \to SOT \\ delay time \end{array}$	t _{SLOVI}	SCKx, SOTx	Masterressele	-40	+40	-30	+30	-20	+20	ns
$\begin{array}{l} \text{SIN} \rightarrow \text{SCK} \uparrow \\ \text{setup time} \end{array}$	tıvs∺ı	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{l} SCK \uparrow \to SIN \\ hold time \end{array}$	t _{SHIXI}	SCKx, SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$\begin{array}{l} SCK \downarrow \to SOT \\ delay \ time \end{array}$	t _{SLOVE}	SCKx, SOTx		-	75	-	50	-	30* ¹ 40* ²	ns
$\begin{array}{l} \text{SIN} \rightarrow \text{SCK} \uparrow \\ \text{setup time} \end{array}$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{l} SCK \uparrow \to SIN \\ hold time \end{array}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns


*1 When PZR = 0.


*2 When PZR = 1.

Notes:

- The above characteristics apply to clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

CSIO (SPI = 0, SCINV = 1)

Parameter	Symbol	Pin name	Conditions	V _{cc} < 2.7 V		2.7 V ≤ V _{CC} < 4.5 V		V _{CC} ≥ 4.5 V		Unit
	_	name		Min	Max	Min	Max	Min	Max	
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	4t _{CYCP}	-	ns
$\begin{array}{l} SCK \uparrow \to SOT \\ delay time \end{array}$	t _{SHOVI}	SCKx, SOTx		-40	+40	-30	+30	-20	+20	ns
$\begin{array}{l} \text{SIN} \rightarrow \text{SCK} \downarrow \\ \text{setup time} \end{array}$	t _{IVSLI}	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$SCK \downarrow \rightarrow SIN$ hold time	t _{SLIXI}	SCKx, SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{СҮСР} + 10	-	t _{СҮСР} + 10	-	t _{CYCP} + 10	-	ns
$\begin{array}{l} SCK \uparrow \to SOT \\ delay time \end{array}$	t _{SHOVE}	SCKx, SOTx		-	75	-	50	-	30* ¹ 40* ²	ns
$\begin{array}{l} \text{SIN} \rightarrow \text{SCK} \downarrow \\ \text{setup time} \end{array}$	t _{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{l} SCK \downarrow \to SIN \\ hold time \end{array}$	t _{SLIXE}	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

*1 When PZR = 0.

*2 When PZR = 1.

Notes:

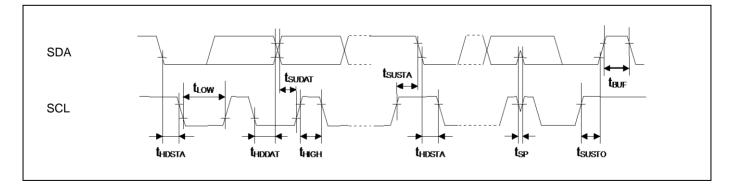
• The above characteristics apply to clock synchronous mode.

t_{CYCP} indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet

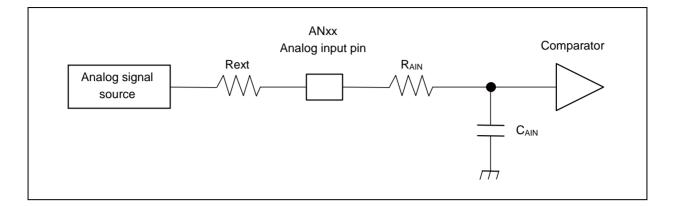
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

12.4.11 ²C Timing

		1		(100 = 1.01 to 0.01, 19					
Parameter	Symbol	Conditions	Standard-mode		Fast-mode		Unit	Remarks	
i di dificici			Min	Max	Min	Max	Onic	Remarko	
SCL clock frequency	f _{SCL}		0	100	0	400	kHz		
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs		
SCL clock L width	t _{LOW}		4.7	-	1.3	-	μs		
SCL clock H width	t _{HIGH}		4.0	-	0.6	-	μs		
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{susta}	C _L = 50 pF,	4.7	-	0.6	-	μs		
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HDDAT}	$R = (V_{P}/I_{OL})^{*1}$	0	3.45* ²	0	0.9* ³	μs		
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t _{sudat}		250	-	100	-	ns		
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susto}		4.0	-	0.6	-	μs		
Bus free time between STOP condition and START condition	t _{BUF}		4.7	-	1.3	-	μs		
Noise filter	t _{SP}	-	2 t _{CYCP} *4	-	2 t _{CYCP} *4	-	ns		


*1: R and C_L represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. V_P indicates the power supply voltage of the pull-up resistor and I_{OL} indicates V_{OL} guaranteed current.

*2: The maximum t_{HDDAT} must satisfy that it does not extend at least L period (t_{LOW}) of device's SCL signal.


- *3: A Fast-mode I²C bus device can be used on a Standard-mode I²C bus system as long as the device satisfies the requirement of $t_{SUDAT} \ge 250$ ns.
- *4: t_{CYCP} is the APB bus clock cycle time.

About the APB bus number which I^2C is connected to, see Block Diagram in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.

(Equation 1) $t_S \ge (R_{AIN} + R_{EXT}) \times C_{AIN} \times 9$

- ts : Sampling time
- $\label{eq:RAIN} \begin{array}{l} \mbox{: Input resistor of A/D = 0.9 k\Omega at 4.5 V \leq AV_{CC} \leq 5.5 V} \\ \mbox{Input resistor of A/D = 1.6 k\Omega at 2.7 V \leq AV_{CC} < 4.5 V} \\ \mbox{Input resistor of A/D = 4.0 k\Omega at 1.8 V \leq AV_{CC} < 2.7 V} \end{array}$
- $C_{AIN}~$: Input capacity of A/D = 15 pF at 1.8 V \leq AV_{CC} \leq 5.5 V
- R_{EXT} : Output impedance of external circuit

(Equation 2) $t_c = t_{CCK} \times 14$

- t_C : Compare time
- t_{CCK} : Compare clock cycle

12.7 Flash Memory Write/Erase Characteristics

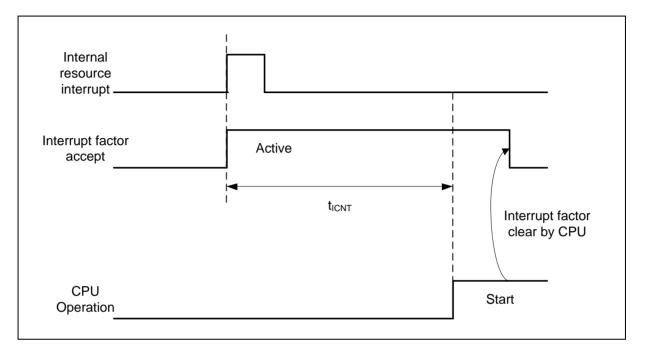
12.7.1 Write / Erase time

$(V_{CC} = 2.0V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter		Value		Unit	Remarks		
		Typ*	Max*	Onit	i/cilidik5		
Sector erase	e Large Sector 1.6 7.5		Includes write time prior to internal erase				
time	Small Sector	0.4	2.1	S	includes while time phot to internal erase		
Half word (16-bit) write time		25	400	μs	Not including system-level overhead time.		
Chip erase time		4	19.2	s	Includes write time prior to internal erase		

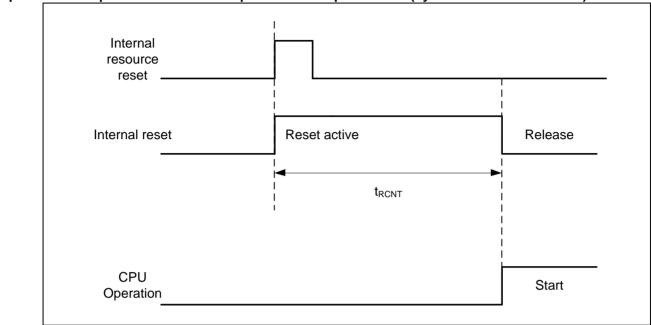
*: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write.

12.7.2 Write cycles and data hold time


Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20*	
10,000	10*	
100,000	5*	

*: At average + 85°C

Operation example of return from Low-Power consumption mode (by internal resource interrupt*)

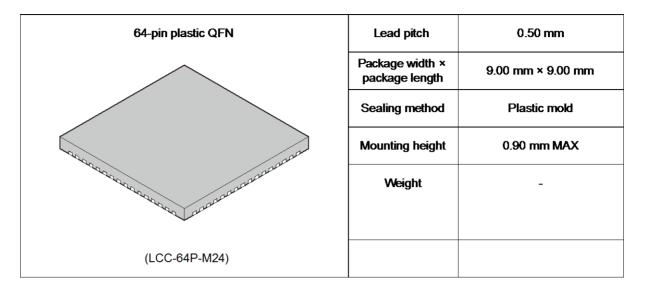


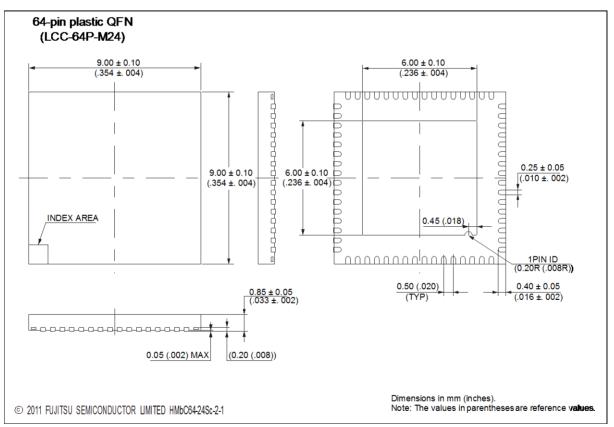
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

- **Notes:** The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
 - When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.

Operation example of return from low power consumption mode (by internal resource reset*)

*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.


- **Notes:** The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
 - When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.
 - The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on Reset Timing in 12.4 AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset.
 - When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time.
 - The internal resource reset means the watchdog reset and the CSV reset.



13. Ordering Information

Part number	On-chip Flash memory	On-chip SRAM	Package	Packing
MB9AF131KBPMC-G-SNE2	64 Kbyte	8 Kbyte		Tray
MB9AF132KBPMC-G-SNE2	128 Kbyte	8 Kbyte	(0.5mm pitch), 48-pin (FPT-48P-M49)	
MB9AF131KBQN-G-AVE2	64 Kbyte	8 Kbyte		
MB9AF132KBQN-G-AVE2	128 Kbyte	8 Kbyte	(0.5mm pitch), 48-pin (LCC-48P-M73)	
MB9AF131LBPMC1-G-SNE2	64 Kbyte	8 Kbyte	Plastic • LQFP	
MB9AF132LBPMC1-G-SNE2	128 Kbyte	8 Kbyte	(0.5mm pitch), 64-pin (FPT-64P-M38)	
MB9AF131LBPMC-G-SNE2	64 Kbyte	8 Kbyte	Plastic • LQFP	
MB9AF132LBPMC-G-SNE2	128 Kbyte	8 Kbyte	(0.65mm pitch), 64-pin (FPT-64P-M39)	
MB9AF131LBQN-G-AVE2	64 Kbyte	8 Kbyte]
MB9AF132LBQN-G-AVE2	128 Kbyte	8 Kbyte	(0.5mm pitch), 64-pin (LCC-64P-M24)	

