

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LCD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f966-a-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 32.2 T0 Mode 2 Block Diagram 4	52
Figure 32.3 TO Mode 3 Block Diagram	153
Figure 32.4 Timer 2.16-Bit Mode Block Diagram	150
Figure 32.4. Timer 2.10-bit Mode Diock Diagram	
Figure 32.5. Timer 2 8-Bit Mode Block Diagram 4	-59
Figure 32.6. Timer 2 Capture Mode Block Diagram 4	60
Figure 32.7. Timer 3 16-Bit Mode Block Diagram 4	64
Figure 32.8. Timer 3 8-Bit Mode Block Diagram 4	65
Figure 32.9. Timer 3 Capture Mode Block Diagram 4	66
Figure 33.1. PCA Block Diagram 4	70
Figure 33.2. PCA Counter/Timer Block Diagram 4	72
Figure 33.3. PCA Interrupt Block Diagram 4	73
Figure 33.4. PCA Capture Mode Diagram 4	75
Figure 33.5. PCA Software Timer Mode Diagram 4	76
Figure 33.6. PCA High-Speed Output Mode Diagram 4	77
Figure 33.7. PCA Frequency Output Mode 4	78
Figure 33.8. PCA 8-Bit PWM Mode Diagram 4	79
Figure 33.9. PCA 9, 10 and 11-Bit PWM Mode Diagram 4	80
Figure 33.10. PCA 16-Bit PWM Mode 4	81
Figure 33.11. PCA Module 5 with Watchdog Timer Enabled 4	82
Figure 34.1. Typical C2 Pin Sharing 4	93

Table 15.5. Three-out-of-Six Decoding21Table 16.1. SFR Map (0xC0–0xFF)22Table 16.2. SFR Map (0x80–0xBF)22Table 16.3. Special Function Registers22Table 17.1. Interrupt Summary23Table 18.1. Flash Security Summary25Table 19.1. Power Modes26Table 20.1. IPeak Inductor Current Limit Settings27Table 23.1. Recommended XFCN Settings for Crystal Mode29Table 23.2. Recommended XFCN Settings for RC and C modes29	1 7 8 9 9 3
Table 16.1. SFR Map (0xC0–0xFF)22Table 16.2. SFR Map (0x80–0xBF)22Table 16.3. Special Function Registers22Table 17.1. Interrupt Summary23Table 18.1. Flash Security Summary25Table 19.1. Power Modes26Table 20.1. IPeak Inductor Current Limit Settings27Table 23.1. Recommended XFCN Settings for Crystal Mode29Table 23.2. Recommended XFCN Settings for RC and C modes29	7 8 9 9 3
Table 16.2. SFR Map (0x80–0xBF)22Table 16.3. Special Function Registers22Table 17.1. Interrupt Summary23Table 18.1. Flash Security Summary25Table 19.1. Power Modes26Table 20.1. IPeak Inductor Current Limit Settings27Table 23.1. Recommended XFCN Settings for Crystal Mode29Table 23.2. Recommended XFCN Settings for RC and C modes29	8 9 9 3
Table 16.3. Special Function Registers 22 Table 17.1. Interrupt Summary 23 Table 18.1. Flash Security Summary 25 Table 19.1. Power Modes 26 Table 20.1. IPeak Inductor Current Limit Settings 27 Table 23.1. Recommended XFCN Settings for Crystal Mode 29 Table 23.2. Recommended XFCN Settings for RC and C modes 29	9 9 3
Table 17.1. Interrupt Summary23Table 18.1. Flash Security Summary25Table 19.1. Power Modes26Table 20.1. IPeak Inductor Current Limit Settings27Table 23.1. Recommended XFCN Settings for Crystal Mode29Table 23.2. Recommended XFCN Settings for RC and C modes29	9 3
Table 18.1. Flash Security Summary 25 Table 19.1. Power Modes 26 Table 20.1. IPeak Inductor Current Limit Settings 27 Table 23.1. Recommended XFCN Settings for Crystal Mode 29 Table 23.2. Recommended XFCN Settings for RC and C modes 29	3
Table 19.1. Power Modes 26 Table 20.1. IPeak Inductor Current Limit Settings 27 Table 23.1. Recommended XFCN Settings for Crystal Mode 29 Table 23.2. Recommended XFCN Settings for RC and C modes 29	_
Table 20.1. IPeak Inductor Current Limit Settings 27 Table 23.1. Recommended XFCN Settings for Crystal Mode 29 Table 23.2. Recommended XFCN Settings for RC and C modes 29	2
Table 23.1. Recommended XFCN Settings for Crystal Mode	5
Table 23.2. Recommended XFCN Settings for RC and C modes	3
	4
Table 24.1. SmaRTClock Internal Registers 30	1
Table 24.2. SmaRTClock Load Capacitance Settings 30	7
Table 24.3. SmaRTClock Bias Settings 304	8
Table 25.1. Pull-Up Resistor Current 32	0
Table 25.2. Sample Rate Duty-Cycle Multiplier 32	0
Table 25.3. Pull-Up Duty-Cycle Multiplier 32	0
Table 25.4. Average Pull-Up Current (Sample Rate = 250 µs)	1
Table 25.5. Average Pull-Up Current (Sample Rate = 500 µs)	1
Table 25.6. Average Pull-Up Current (Sample Rate = 1 ms)	1
Table 25.7. Average Pull-Up Current (Sample Rate = 2 ms)	1
Table 26.1. Bit Configurations to select Contrast Control Modes	3
Table 27.1. Port I/O Assignment for Analog Functions	8
Table 27.2. Port I/O Assignment for Digital Functions	9
Table 27.3. Port I/O Assignment for External Digital Event Capture Functions 35	9
Table 28.1. SMBus Clock Source Selection	0
Table 28.2. Minimum SDA Setup and Hold Times	1
Table 28.3. Sources for Hardware Changes to SMB0CN	5
Table 28.4. Hardware Address Recognition Examples (EHACK = 1)	6
Table 28.5. SMBus Status Decoding With Hardware ACK Generation	
Disabled (EHACK = 0) 40	3
Table 28.6. SMBus Status Decoding With Hardware ACK Generation	
Enabled (EHACK = 1) 40	5
Table 29.1. Timer Settings for Standard Baud Rates	
Using The Internal 24.5 MHz Oscillator 41	4
Table 29.2. Timer Settings for Standard Baud Rates	
Using an External 22.1184 MHz Oscillator 41	4
Table 30.1. SPI Slave Timing Parameters 42	8
Table 31.1. SPI Slave Timing Parameters	7
Table 32.1. Timer 0 Running Modes	0
Table 33.1. PCA Timebase Input Options 47	1
Table 33.2. PCA0CPM and PCA0PWM Bit Settings for PCA	
Capture/Compare Modules	3
Table 33.3. Watchdog Timer Timeout Intervals1 48	3
Table 33.3 Watchdog Timer Timeout Intervals1 48	3

C8051F96x

Pin Numbers		rs	Tuno	Rescription		
Name	DQFN76	TQFP80	QFN40	туре	Description	
P0.0	A4	6	4	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.	
V _{REF}				A In A Out	External V_{REF} Input. Internal V_{REF} Output. External V_{REF} decoupling capacitors are recommended. See ADC0 Section for details.	
P0.1	A3	4	3	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.	
AGND				G	Optional Analog Ground. See ADC0 Section for details.	
P0.2	A2	2	2	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.	
XTAL1				A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.	
P0.3	A1	1	1	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.	
XTAL2				A Out	External Clock Output. This pin is the excitation driver for an external crystal or resonator.	
				D In	External Clock Input. This pin is the external clock input in external CMOS clock mode.	
				A In	External Clock Input. This pin is the external clock input in capacitor or RC oscillator configurations. See Oscillator Section for complete details.	
P0.4	A40	79	40	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.	
тх				D Out	UART TX Pin. See Port I/O Section.	
P0.5	A39	78	39	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.	
RX				D In	UART RX Pin. See Port I/O Section.	
P0.6	A38	76	38	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.	
CNVSTR				D In	External Convert Start Input for ADC0. See ADC0 section for a complete description.	
P0.7	A37	74	37	D I/O or A In	Port 0.7. See Port I/O Section for a complete description.	
IREF0				A Out	IREF0 Output. See IREF Section for complete description.	

C8051F96x

3.3. TQFP-80 Package Specifications

Figure 3.9. TQFP-80 Package Drawing

Dimension	Min	Nominal	Max			
Α		—	1.20			
A1	0.05	0.15				
A2	0.95	1.00	1.05			
b	0.17	0.20	0.27			
С	0.09	—	0.20			
D	14.00 BSC					
D1	12.00 BSC					
е	0.50 BSC					
E	14.00 BSC					
E1	12.00 BSC					
L	0.45 0.60 0.75					
L1		1.00 Ref				

Table 3.7. TQFP-80 Package Dimensions

SFR Definition 5.5. ADC0TK: ADC0 Burst Mode Track Time

Bit	7	6	5	4	3	2	1	0
Name			AD0TK[5:0]					
Туре	R	R	R/W					
Reset	0	0	0	0 1 1 1 1 0				

SFR Page = 0xF; SFR Address = 0xBB

Bit	Name	Function
7	Reserved	Read = 0b; Write = Must Write 0b.
6	Unused	Read = 0b; Write = Don't Care.
5:0	AD0TK[5:0]	ADC0 Burst Mode Track Time.
		Sets the time delay between consecutive conversions penormed in Burst Mode.
		The ADC0 Burst Mode Track time is programmed according to the following equa-
		$AD0TK = 63 - \left(\frac{Ttrack}{50ns} - 1\right)$
		or
		Ttrack = (64 - AD0TK)50ns
Notes 1.	If AD0TM is se conversion.	et to 1, an additional 3 SAR clock cycles of Track time will be inserted prior to starting the

2. The Burst Mode Track delay is not inserted prior to the first conversion. The required tracking time for the first conversion should be met by the Burst Mode Power-Up Time.

10.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 10.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYS-CLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for /ALE + 1 for RD or WR + 4). The programmable setup and hold times default to the maximum delay settings after a reset. Table 10.2 lists the ac parameters for the External Memory Interface, and Figure 10.4 through Figure 10.9 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

Parameter	Description	Min*	Max*	Units
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns
T _{RDS}	Read Data Setup Time	20		ns
T _{RDH}	Read Data Hold Time	0		ns
*Note: T _{SYSCLK} is	equal to one period of the device system clock (S)	YSCLK).	•	

Table 10.2. AC Parameters for External Memory Interface

SFR Definition 13.2. CRC1IN: CRC1 Data IN

Bit	7	6	5	4	3	2	1	0
Name	CRC1IN[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x2; SFR Address = 0xB9; Not Bit-Addressable

Bit	Name	Function
7:0	CRC1IN[7:0]	CRC1Data IN.
		CRC Data should be sequentially written, one byte at a time, to the CRC1IN Data input SFR.
		SFR.

SFR Definition 13.3. CRC1POLL: CRC1 Polynomial LSB

Bit	7	6	5	4	3	2	1	0
Name	CRC1POLL[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x2; SFR Address = 0xBC; Not Bit-Addressable

Bit	Name	Function
7:0	CRC1POLL[7:0]	CRC1 Polynomial LSB.

SFR Definition 13.4. CRC1POLH: CRC1 Polynomial MSB

Bit	7	6	5	4	3	2	1	0			
Name	CRC1POLH[7:0]										
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
SFR Page = 0x2; SFR Address = 0xBD; Not Bit-Addressable											
D:4	Mama				E.matia:	•					

Bit	Name	Function
7:0	CRC1POLH[7:0]	CRC1 Polynomial MSB.

Table 16.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	SFR Page	e Description		
LCD0D9	0x94	0x2	LCD0 Data 9	340	
LCD0DA	0x95	0x2	LCD0 Data A	340	
LCD0DB	0x96	0x2	LCD0 Data B	340	
LCD0DC	0x97	0x2	LCD0 Data C	340	
LCD0DD	0x99	0x2	LCD0 Data D	340	
LCD0DE	0x9A	0x2	LCD0 Data E	340	
LCD0DF	0x9B	0x2	LCD0 Data F	340	
LCD0MSCF	0xAC	0x2	LCD0 Master Configuration	348	
LCD0MSCN	0xAB	0x2	LCD0 Master Control	347	
LCD0PWR	0xA4	0x2	LCD0 Power	348	
LCD0TOGR	0x9F	0x2	LCD0 Toggle Rate	352	
LCD0VBMCF	0xAF	0x2	LCD0 VBAT Monitor Configuration	355	
LCD0VBMCN	0xA6	0x2	LCD0 VBAT Monitor Control	349	
OSCICL	0xB3	0xF	Internal Oscillator Calibration	298	
OSCICN	0xB2	0x0	Internal Oscillator Control	297	
OSCXCN	0xB1	0x0	External Oscillator Control	299	
P0DRV	0xA4	0xF	Port 0 Drive Strength	371	
P0MASK	0xC7	0x0	Port 0 Mask	366	
POMAT	0xD7	0x0	Port 0 Match	366	
P0MDIN	0xF1	0x0	Port 0 Input Mode Configuration	370	
P0MDOUT	0xA4	0x0	Port 0 Output Mode Configuration	370	
P0SKIP	0xD4	0x0	Port 0 Skip	369	
P0	0x80	All Pages	Port 0 Latch	369	
P1DRV	0xA5	0xF	Port 1 Drive Strength	373	
P1MASK	0xBF	0x0	Port 1 Mask	367	
P1MAT	0xCF	0x0	Port 1 Match	367	
P1MDIN	0xF2	0x0	Port 1 Input Mode Configuration	372	
P1MDOUT	0xA5	0x0	Port 1 Output Mode Configuration	373	
P1SKIP	0xD5	0x0	Port 1 Skip	372	
P1	0x90	All Pages	Port 1 Latch	371	
P2DRV	0xA6	0xF	Port 2 Drive Strength	376	
P2MDIN	0xF3	0x0	Port 2 Input Mode Configuration	375	
P2MDOUT	0xA6	0x0	Port 2 Output Mode Configuration	375	
P2SKIP	0xD6	0x0	Port 2 Skip	374	

20.2. High Power Applications

The dc-dc converter is designed to provide the system with 150 mW of output power. At high output power, an inductor with low DC resistance should be chosen in order to minimize power loss and maximize efficiency. At load currents higher than 20 mA, efficiency improvents may be achieved by placing a schottky diode (e.g. MBR052LT1) between the IND pin and GND in parallel with the internal diode (see Figure 20.1).

20.3. Pulse Skipping Mode

The dc-dc converter allows the user to set the minimum pulse width such that if the duty cycle needs to decrease below a certain width in order to maintain regulation, an entire "clock pulse" will be skipped.

Pulse skipping can provide substantial power savings, particularly at low values of load current. The converter will continue to maintain a minimum output voltage at its programmed value when pulse skipping is employed, though the output voltage ripple can be higher. Another consideration is that the dc-dc will operate with pulse-frequency modulation rather than pulse-width modulation, which makes the switching frequency spectrum less predictable; this could be an issue if the dc-dc converter is used to power a radio.

20.4. Optimizing Board Layout

The PCB layout does have an effect on the overall efficiency. The following guidelines are recommended to acheive the optimum layout:

- Place the input capacitor stack as close as possible to the VBATDC pin. The smallest capacitors in the stack should be placed closest to the VBATDC pin.
- Place the output capacitor stack as close as possible to the VDC pin. The smallest capacitors in the stack should be placed closest to the VDC pin.
- Minimize the trace length between the IND pin, the inductor, and the VDC pin.

20.5. Selecting the Optimum Switch Size

The dc-dc converter provides the ability to change the size of the built-in switches. To maximize efficiency, one of two switch sizes may be selected. The large switches are ideal for carrying high currents and the small switches are ideal for low current applications. The ideal switchover point to switch from the small switches to the large switches is at approximately 5 mA total output current.

20.6. DC-DC Converter Clocking Options

The dc-dc converter may be clocked from its internal oscillator, or from any system clock source, selectable by the CLKSEL bit (DC0CF.0). The dc-dc converter internal oscillator frequency is approximately 2.4 MHz. For a more accurate clock source, the system clock, or a divided version of the system clock may be used as the dc-dc clock source. The dc-dc converter has a built in clock divider (configured using DC0CF[6:5]) which allows any system clock frequency over 1.6 MHz to generate a valid clock in the range of 1.9 to 3.8 MHz.

When the precision internal oscillator is selected as the system clock source, the OSCICL register may be used to fine tune the oscillator frequency and the dc-dc converter clock. The oscillator frequency should only be decreased since it is factory calibrated at its maximum frequency. The minimum frequency which can be reached by the oscillator after taking into account process variations is approximately 16 MHz. The system clock routed to the dc-dc converter clock divider also may be inverted by setting the CLKINV bit (DC0CF.3) to logic 1. These options can be used to minimize interference in noise sensitive applications.

		PC0PCF[4:2]										
PC0PCF[1:0]	000	001	010	011	100	101	110	111	Cycle			
00	disabled	250 nA	1.0 µA	4.0 µA	16 µA	64 µA	250 µA	1000 µA	25%			
01	disabled	375 nA	1.5 µA	6.0 µA	24 µA	96 µA	375 µA	1500 µA	37.5%			
10	disabled	500 nA	2.0 µA	8.0 µA	32 µA	128 µA	500 µA	2000 µA	50%			
11	disabled	750 nA	3.0 µA	12.0 µA	48 µA	192 µA	750 µA	3000 µA	75%			

Table 25.4. Average Pull-Up Current (Sample Rate = 250 μs)

Table 25.5. Average Pull-Up Current (Sample Rate = 500 µs)

		PC0PCF[4:2]											
PC0PCF[1:0]	000	001	010	011	100	101	110	111	Cycle				
00	disabled	125 nA	0.50 µA	2.0 µA	8 µA	32 µA	125 µA	500 µA	12.5%				
01	disabled	188 nA	0.75 µA	3.0 µA	12 µA	48 µA	188 µA	750 µA	18.8%				
10	disabled	250 nA	1.0 µA	4.0 µA	16 µA	64 µA	250 µA	1000 µA	25%				
11	disabled	375 nA	1.5 µA	6.0 µA	24 µA	96 µA	375 µA	1500 µA	37.5%				

 Table 25.6.
 Average Pull-Up Current (Sample Rate = 1 ms)

		PC0PCF[4:2]										
PC0PCF[1:0]	000	001	010	011	100	101	110	111	Cycle			
00	disabled	63 nA	250 nA	1.0 µA	4 μΑ	16 µA	63 µA	250 µA	6.3%			
01	disabled	94 nA	375 nA	1.5 µA	6 µA	24 µA	94 µA	375 µA	9.4%			
10	disabled	125 nA	500 nA	2.0 µA	8 µA	32 µA	125 µA	500 µA	12.5%			
11	disabled	188 nA	750 nA	3.0 µA	12 µA	48 µA	188 µA	750 µA	18.8%			

Table 25.7. Average Pull-Up Current (Sample Rate = 2 ms)

				PC0PC	CF[4:2]				Duty
PC0PCF[1:0]	000	001	010	011	100	101	110	111	Cycle
00	disabled	31 nA	125 nA	0.50 µA	2.0 µA	8 µA	31 µA	125 µA	3.1%
01	disabled	47 nA	188 nA	0.75 µA	3.0 µA	12 µA	47 µA	188 µA	4.7%
10	disabled	63 nA	250 nA	1.0 µA	4.0 µA	16 µA	63 µA	250 µA	6.3%
11	disabled	94 nA	375 nA	1.5 µA	6.0 µA	24 µA	94 µA	375 µA	9.4%

25.10.2. Flutter Detection

The flutter detection can be used with either quadrature counter mode or dual counter mode when the two inputs are expected to be in step. Flutter refers to the case where one input continues toggling while the other input stops toggling. This may indicate a broken reed switch or a pressure oscillation when the wheel magnet stops at just the right distance from the reed switch. If a pressure oscillation causes a slight rotational oscillation in the wheel, it could cause a number of pulses on one of the inputs, but not on the other. All four edges are checked by the flutter detection feature (PC1 positive, PC1 negative, PC0 positive, and PC0 negative). When enabled, Flutter detection may be used as an interrupt or wake-up source.

For example, flutter detected on the PC0 positive edge means that 4 edges (positive or negative) were detected on PC1 since the last PC0 positive edge. Each PC0 positive edge resets the flutter detection counter while either PC1 edge increments the counter. There are similar counters for all four edges.

The flutter detection circuit provides interrupts or wake-up sources, but firmware must also read the Pulse Counter registers to determine what corrective action, if any, must be taken.

On the start of flutter event, the firmware should save both counter values and the PC0HIST register. Once the end of flutter event occurs the firmware should also save both counter values and the PC0HIST register. The stop count on flutter, STPCNTFLTR (PCMD[2]), be used to stop the counters when flutter is occurring (quadrature mode only). For quadrature mode, the opposite counter should be decremented by one. In other words, if the direction was clock-wise, the counter clock-wise counter (counter 1) should be decremented by one to correct for one increment before flutter was detected. For dual mode, two reed switches can be used to get a redundant count. If flutter starts during dual mode, both counters should be saved by firmware. After flutter stops, both counters should be read again. The counter that incremented the most was the one that picked up the flutter. There is also a mode to switch from quadrature to dual (PC0MD[1]) when flutter occurs. This changes the counter style from quadrature (count on any edge of PC1 or PC0) to dual to allow all counts to be recorded. Once flutter ends, this mode switches the counters back to quadrature mode. STPCNTFLTR does not function when PC0MD[1] is set.

SFR Definition 26.3. LCD0CNTRST: LCD0 Contrast Adjustment

Bit	7	6	5	4	3	2	1	0		
Name	Reserved	Reserved	Reserved	CNTRST						
Туре	R/W	R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x2; SFR Address = 0x9C

Bit	Name	Function
7:5	Reserved	Read = 000. Write = Must write 000.
4:0	CNTRST	Contrast Setpoint.
		Determines the setpoint for the VLCD voltage necessary to achieve the desired
		contrast.
		00000: 1.90
		00001: 1.96
		00010: 2.02
		00011: 2.08
		00100: 2.13
		00101: 2.19
		00110: 2.25
		00111: 2.31
		01000: 2.37
		01001: 2.43
		01010: 2.49
		01011: 2.55
		01100: 2.60
		01101: 2.66
		01110: 2.72
		01111: 2.78
		10000: 2.84
		10001: 2.90
		10010: 2.96
		10011: 3.02
		10100: 3.07
		10110: 3.19
		10111. 3.25
		11000. 3.31
		11010: 3.37
		11011. 3.40
		11100. 3.54
		11101. 3.60
		11110: 3.66
		11111. 3.72
		11111. 3.72

27. Port Input/Output

Digital and analog resources are available through 57 I/O pins (C8051F960/2/4/6/8) or 34 I/O pins (C8051F961/3/5/7/9). Port pins are organized as eight byte-wide ports. Port pins can be defined as digital or analog I/O. Digital I/O pins can be assigned to one of the internal digital resources or used as general purpose I/O (GPIO). Analog I/O pins are used by the internal analog resources. P7.0 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). See Section "34. C2 Interface" on page 490 for more details.

The designer has complete control over which digital and analog functions are assigned to individual port pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. See Section 27.3 for more information on the Crossbar.

For Port I/Os configured as push-pull outputs, current is sourced from the VIO or VIORF supply pin. On 40pin devices, the VIO and VIORF supply pins are internally tied to VBAT. See Section 27.1 for more information on Port I/O operating modes and the electrical specifications chapter for detailed electrical specifications.

Figure 27.1. Port I/O Functional Block Diagram

SFR Definition 27.12. P0DRV: Port0 Drive Strength

Bit	7	6	5	4	3	2	1	0			
Name	P0DRV[7:0]										
Туре	R/W										
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0xF; SFR Address = 0xA4

Bit	Name	Function
7:0	P0DRV[7:0]	Drive Strength Configuration Bits for P0.7–P0.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength. 0: Corresponding P0.n Output has low output drive strength. 1: Corresponding P0.n Output has high output drive strength.

SFR Definition 27.13. P1: Port1

Bit	7	6	5	4	3	2	1	0		
Name	P1[7:0]									
Туре	R/W									
Reset	1	1	1	1	1	1	1	1		

SFR Page = All Pages; SFR Address = 0x90; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

SFR Definition 27.28. P4MDIN: Port4 Input Mode

Bit	7	6	5	4	3	2	1	0			
Name	P4MDIN[7:0]										
Туре	R/W										
Reset	1	1	1	1	1	1	1				

SFR Page = 0xF; SFR Address = 0xF2

Bit	Name	Function
7:0	P4MDIN[3:0]	Analog Configuration Bits for P4.7–P4.0 (respectively).
		Port pins configured for analog mode have their weak pullup and digital receiver disabled. The digital driver is not explicitly disabled.0: Corresponding P4.n pin is configured for analog mode.1: Corresponding P4.n pin is not configured for analog mode.

SFR Definition 27.29. P4MDOUT: Port4 Output Mode

Bit	7	6	5	4	3	2	1	0			
Name	P4MDOUT[7:0]										
Туре	R/W										
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0xF; SFR Address = 0xF9

Bit	Name	Function
7:0	P4MDOUT[7:0]	Output Configuration Bits for P4.7–P4.0 (respectively).
		These bits control the digital driver even when the corresponding bit in register P4MDIN is logic 0. 0: Corresponding P4.n Output is open-drain. 1: Corresponding P4.n Output is push-pull

Hardware Slave Address SLV[6:0]	Slave Address Mask SLVM[6:0]	GC bit	Slave Addresses Recognized by Hardware
0x34	0x7F	0	0x34
0x34	0x7F	1	0x34, 0x00 (General Call)
0x34	0x7E	0	0x34, 0x35
0x34	0x7E	1	0x34, 0x35, 0x00 (General Call)
0x70	0x73	0	0x70, 0x74, 0x78, 0x7C

Table 28.4. Hardware Address Recognition Examples (EHACK = 1)

SFR Definition 28.3. SMB0ADR: SMBus Slave Address

Bit	7	7 6 5 4 3 2 1									
Name	SLV[6:0]										
Туре	R/W										
Reset	0 0 0 0 0 0 0										

SFR Page = 0x0; SFR Address = 0xF4

Bit	Name	Function
7:1	SLV[6:0]	SMBus Hardware Slave Address.
		Defines the SMBus Slave Address(es) for automatic hardware acknowledgement. Only address bits which have a 1 in the corresponding bit position in SLVM[6:0] are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC	General Call Address Enable.
		 When hardware address recognition is enabled (EHACK = 1), this bit will determine whether the General Call Address (0x00) is also recognized by hardware. 0: General Call Address is ignored. 1: General Call Address is recognized.

C8051F96x

wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 30.5. Master Mode Data/Clock Timing

Operational Mode		PCA0CPMn						PCA0PWM					
Software Timer	Х	С	0	0	1	0	0	А	0	Х	в	XXX	XX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	в	XXX	XX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	0	Х	В	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	11
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX

Table 33.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

Notes:

- **1.** X = Don't Care (no functional difference for individual module if 1 or 0).
- **2.** A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
- 3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).
- 4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the
- associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0). **5.** D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated
- channel is accessed via addresses PCA0CPHn and PCA0CPLn.
- 6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
- 7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

33.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

SFR Definition 33.5. PCA0L: PCA Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA	0[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xF9

Bit	Name	Function
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.
Note:	When the WE the PCA0L re	DTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents of gister, the Watchdog Timer must first be disabled.

SFR Definition 33.6. PCA0H: PCA Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0		
Name	PCA0[15:8]									
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x0; SFR Address = 0xFA

Bit	Name	Function
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 33.1).
Note:	When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of the PCA0H register, the Watchdog Timer must first be disabled.	

