

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detailo	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x16b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51em128clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF51EM256 Series Configurations

1.1 Device Comparison

The MCF51EM256 series is summarized in Table 1.

Feature	MCF51	EM256	MCF51EM128			
Flash size (bytes)	262	144	131	072		
RAM size (bytes)	163	384	81	92		
Robust flash update supported		Ye	es			
Pin quantity	100	80	100	80		
PRACMP1 inputs	5 3		5	3		
PRACMP2 inputs		Ę	5			
ADC modules	4 4					
ADC differential channels ¹	4	2	4	2		
ADC single-ended channels	16	12	16	12		
DBG	Yes					
ICS	Yes					
IIC	Yes					
IRQ		Ye	es			
IRTC		Ye	es			
VREF		Ye	es			
LCD drivers	44	37	44	37		
Rapid GPIO ²	16	16	16	16		
Port I/O ³	47	40	47	40		
Keyboard interface 1		ξ	3			
Keyboard interface 2		٤	3			
SCI1		Ye	es			
SCI2		Ye	es			
SCI3		Ye	es			
SPI1 (FIFO)		Ye	es			
SPI2 (standard)		Ye	es			
SPI3 (standard)	Yes	No	Yes	No		

Table 1. MCF51EM256 Series Features by MCU and Package

MCF51EM256 Series Configurations

- 6 µs typical wakeup time from stop3 mode
- Clock source options
 - Two independent oscillators (XOSC1 and XOSC2) loop-control Pierce oscillator;
 32.768 kHz crystal or ceramic resonator. XOSC1 nominally supports the independent real time clock, and can be powered by a separate battery backup. XOSC2 is the primary external clock source for the ICS
 - Internal clock source (ICS) internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference (XOSC1 or XOSC2); precision trimming of internal reference allowing 0.2% resolution and typical 0.5% to –1% deviation over temperature and voltage; supporting CPU frequencies from 4 kHz to 50 MHz
- System protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
 - Low voltage detection with reset or interrupt; selectable trip points; seperate low voltage warning with optional interrupt; selectable trip points
 - Illegal opcode and illegal address detection with reset
 - Flash block protection for each array to prevent accidental write/erasure
 - Hardware CRC module to support fast cyclic redundancy checks
- Development support
 - Integrated ColdFire DEBUG_Rev_B+ interface with single wire BDM connection supports same electrical interface used by the S08 family debug modules
 - Real-time debug support with six hardware breakpoints (4 PC, 1 address and 1 data)
 - On-chip trace buffer provides programmable start/stop recording conditions
- Peripherals
 - ADC16 4 analog-to-digital converters; the 100 pin version of the device has 1 dedicated differential channel and 1 dedicated single-ended channel per ADC, along with 3 muxed single-ended channels per ADC. The ADCs have 16-bit resolution, range compare function, 1.7 mV/°C temperature sensor, internal bandgap reference channel, operate in stop3 and are fully functional from 3.6 V to 1.8 V
 - PDB Programmable delay block with 16-bit counter and modulus and 3-bit prescaler; 8 trigger outputs for ADC16 modules (2 per ADC); provides periodic coordination of ADC sampling sequence with programmable sequence completion interrupt
 - IRTC Ultra-low power independent real time clock with calendar features (IRTC); runs in all MCU modes; external clock source with trim capabilities (XOSC1); independent voltage source runs IRTC when MCU is powered-down; tamper detection and indicator; battery monitor output to ADC; unaffected by MCU resets
 - **PRACMPx** Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to programmable internal reference voltage; operation in stop3
 - LCD up to 288 segments (8×36); 160 segments (4×40); internal charge pump and option to provide internal reference voltage that can be trimmed for contrast control; flexible

MCF51EM256 Series Configurations

1.5.2 Pinout: 100-Pin LQFP

Figure 3 shows the pinout configuration for the 100-pin LQFP. Pins which are blacked out do not have an equivalent pin on the 80-pin LQFP package.

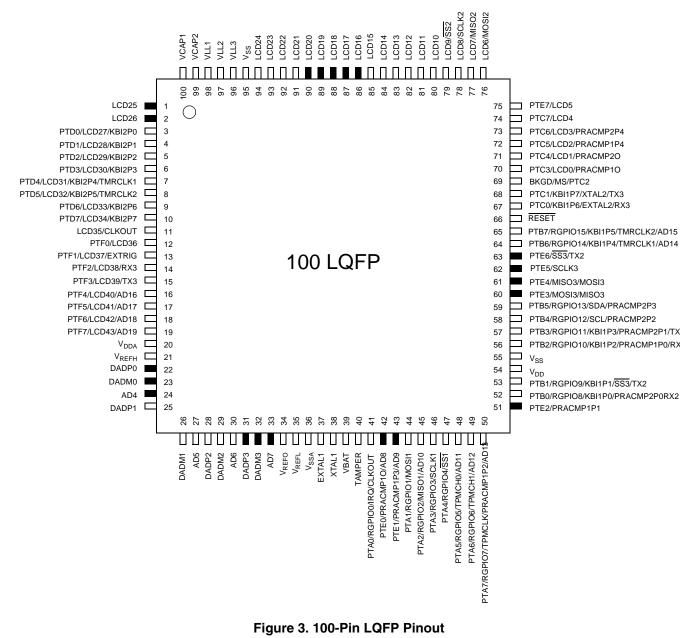


Table 4 shows the package pin assignments.

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	±2000	_	V
2	Machine Model (MM)	V _{MM}	±200	_	V
3	Charge Device Model (CDM)	V _{CDM}	±500	_	V
4	Latch-up Current at T _A = 85 °C	I _{LAT}	±100		mA

Table 9. ESD and Latch-Up Protection Characteristics

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С		Parameter	Symbol	Min	Typical ¹	Мах	Unit
		Operating	Digital supply — 50 MHz operation	V _{DD}	2.5		3.6	
1	Ρ	voltage	Digital supply ² — 20 MHz maximum operation	V _{DD}	1.8	_	3.6	V
2	Ρ	Analog supply		V _{DDA}	1.8	—	3.6	V
3	D	Battery supply		V _{BAT}	2.2	3	3.3	V
4	Ρ	Bandgap volta	ge reference ³	V _{BG}	1.15	1.17	1.18	V
5	C	Output high	$\label{eq:ptau} \begin{array}{l} \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{low-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } \mbox{I}_{Load} = -0.6 \mbox{ mA} \\ \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{high-drive strength.} \end{array}$	M	V _{DD} – 0.5			v
5	C	voltage	$\label{eq:VDD} \begin{split} &\text{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ &\text{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ &\text{high-drive strength.} \\ &\text{V}_{DD} \geq 1.8 \text{ V, } \text{I}_{\text{Load}} = -3 \text{ mA} \end{split}$	V _{OH}	v _{DD} – 0.5			v
6	C P	Output high voltage	$\label{eq:ptc} \begin{array}{l} \mbox{PTC}[7:3], \mbox{PTD}[7:0], \mbox{PTE7}, \mbox{PTF}[7:0], \\ \mbox{LCD35/CLKOUT}, \mbox{MOSI2}, \mbox{MISO2}, \\ \mbox{SCK2}, \mbox{SS2}, \mbox{low drive strength}. \\ \mbox{VDD} \geq 1.8 \ \mbox{V}, \mbox{I}_{Load} = -0.5 \ \mbox{mA} \\ \mbox{PTC}[7:3], \mbox{PTD}[7:0], \mbox{PTE7}, \mbox{PTF}[7:0], \\ \mbox{LCD35/CLKOUT}, \mbox{MOSI2}, \mbox{MISO2}, \\ \mbox{SCK2}, \mbox{SS2}, \mbox{high-drive strength}. \\ \mbox{V}_{DD} \geq 2.7 \ \mbox{V}, \mbox{I}_{Load} = -3 \ \mbox{mA} \\ \end{array}$	V _{OH}	V _{DD} – 0.5		_	v
	С		$\label{eq:ptc:response} \begin{array}{l} \mbox{PTC[7:3], PTD[7:0], PTE7, PTF[7:0], } \\ \mbox{LCD35/CLKOUT, MOSI2, MISO2, } \\ \mbox{SCK2, SS2, high-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } I_{Load} = -1 \mbox{ mA} \end{array}$					
7	D	Output high current	Max total I _{OH} for all ports	I _{OHT}	—	—	100	mA

Table 10. DC Characteristics

Num	С		Parameter	Symbol	Min	Typical ¹	Мах	Unit
8	C P C	Output low voltage	$\begin{array}{l} \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{low-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } I_{Load} = 2 \mbox{ mA} \\ \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{high-drive strength.} \\ \mbox{V}_{DD} \geq 2.7 \mbox{ V, } I_{Load} = 10 \mbox{ mA} \\ \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{high-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } I_{Load} = 3 \mbox{ mA} \\ \end{array}$	V _{OL}	_	_	0.50	V
9	C P	$\label{eq:constraint} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V _{OL}	_		0.50	v
	с		LCD35/CLKOUT, MOSI2, MISO2, SCK2, SS2, high-drive strength. $V_{DD} \ge 1.8 \text{ V}, I_{Load} = 1 \text{ mA}$					
10	D	Output low current	Max total I _{OL} for all ports	I _{OLT}	—	—	100	mA
		la aut bisb	All digital inputs except tamper_in, V _{DD} > 2.7 V		$0.70 imes V_{DD}$	_	_	
11	Ρ	Input high voltage	All digital inputs except tamper_in, 2.7 V > V_{DD} \ge 1.8 V	V _{IH}	$0.85 \times V_{DD}$		—	V
			Tamper_in		1.5		—	
		Innut Inu	All digital inputs except tamper_in, V _{DD} > 2.7 V		_	_	$0.35 \times V_{DD}$	
12	Ρ	Input low voltage	all digital inputs except tamper_in, 2.7 V > V_{DD} \geq 1.8 V	V _{IL}	_	_	$0.3\times V_{DD}$	V
			Tamper_in		—	_	0.5	
13	С	Input hysteres	is; all digital inputs	V _{hys}	$0.06 \times V_{DD}$	_	—	mV
14	Ρ		current; input only pins ⁴	_{In}	—	0.1	1	μA
15	Ρ	0 1	ce (off-state) leakage current ⁴	I _{OZ}	—	0.1	1	μA
16	Ρ	Internal pullup		R _{PU}	17.5		52.5	kΩ
17	Ρ	Internal pulldo	wn resistors ⁶	R _{PD}	17.5		52.5	kΩ
18	С	Input capacitance; all non-supply pins		C _{In}	—		8	pF
19	Ρ	POR rearm voltage		V _{POR}	0.9	1.4	2.0	V
20	D	POR rearm tin	ne	t _{POR}	10		_	μs
0.1	_	Low-voltage	High range — V _{DD} falling	N	2.300	2.355	2.410	
21	Р	detection threshold	High range — V _{DD} rising	V _{LVDH}	2.370	2.425	2.480	V

Table 10. DC Characteristics (continued)

Num	С		Parameter	Symbol	Min	Typical ¹	Мах	Unit
	_	Low-voltage	Low range — V _{DD} falling		1.800	1.845	1.890	V
22	t	detection threshold	Low range — V _{DD} rising	V _{LVDL}	1.870	1.915	1.960	V
	Low-voltage		V _{DD} falling, LVWV = 1		2.590	2.655	2.720	.,
23		warning threshold	V _{DD} rising, LVWV = 1	V _{LVWH}	2.580	2.645	2.710	V
24	с	Low-voltage warning	V_{DD} falling, LVWV = 0	V _{LVWL}	2.300	2.355	2.410	v
24	C		V _{DD} rising, LVWV = 0		2.360	2.425	2.490	
25	D	RAM retention	voltage	V _{RAM}	_	0.6	1.0	V
26	D	$\begin{array}{l} \mbox{DC injection current}^{7\ 8\ 9\ 10} \mbox{ (single pin limit),} \\ \mbox{V}_{IN} > \mbox{V}_{DD,} \mbox{V}_{IN} < \mbox{V}_{SS} \\ \mbox{DC injection current (Total MCU limit, includes sum of all stressed pins),} \\ \mbox{V}_{IN} > \mbox{V}_{DD,} \mbox{V}_{IN} < \mbox{V}_{SS} \end{array}$		l _{IC}	-0.2	_	0.2	mA
20					-5	—	5	mA

Table 10. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25 °C unless otherwise stated.

 $^2~$ Switch to lower frequency when the low-voltage interrupt asserts (V_LVDH).

 3 Factory trimmed at V_DD = 3.0 V, Temp = 25°C

⁴ Measured with $V_{In} = V_{DD}$ or V_{SS} .

⁵ Measured with $V_{In} = V_{SS}$.

⁶ Measured with $V_{In} = V_{DD}$.

⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 8 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

¹⁰ The RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

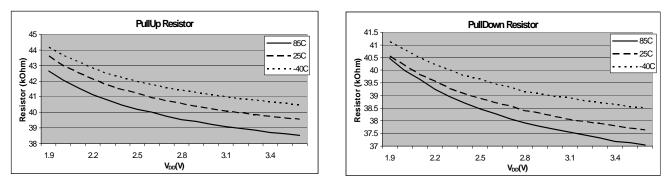
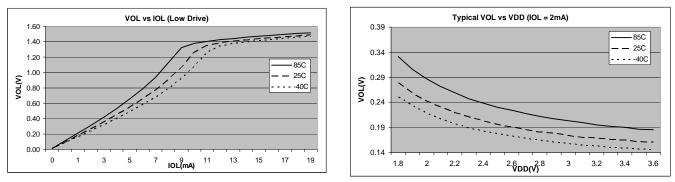



Figure 4. Pullup and Pulldown Typical Resistor Values

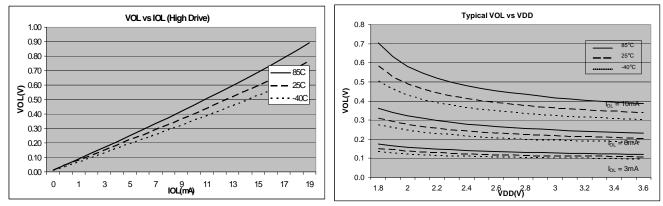


Figure 6. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

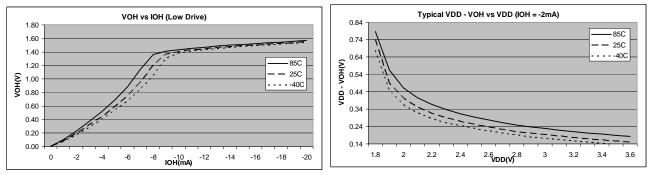


Figure 7. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0)

Num	с	Parame	ter	Symbol	V _{DD} (V)	Typical ¹	Мах	Unit	Temp (°C)		
	Р		25.165 MHz			66.2	100				
1	Т	Run supply current FEI mode, all	20 MHz		3	55.3	_	mA	-40 to		
I	Т	modules on	8 MHz	RI _{DD}	3	23.9		mA	85°C		
	Т		1 MHz			4.56	_				
	С		25.165 MHz			55.1	56				
2	Т	Run supply current	20 MHz		2	46.6			-40 to		
2	Т	FEI mode, all modules off	8 MHz	RI _{DD}	5	3	5	19.9	_	mA	85°C
	Т		1 MHz			3.92	_				
	Т	Run supply current	16 kHz FBILP			239	_				
3	т	LPS=0, all modules off	16 kHz FBELP	RI _{DD}	3	249	_	μA	—		
4	т	Run supply current LPS = 1, all modules off, running from flash	16 kHz FBELP	RI _{DD}	3	50	_	μΑ	_		
	С	Wait mode supply	25.165 MHz			51.1	69				
5	Т	current	20 MHz	14/1	2	42.6			-40 to		
5	Т	FEI mode, all	8 MHz	WI _{DD}	3	18.8	_	mA	85°C		
	Т	modules off	1	•		3.69	—	1			
6	т	Wait mode supply cu LPRS = 1, all mods c		WI _{DD}	3	1	_	μA	_		
7	Р	Stan0 made supply a	urront	S2I _{DD}	3	0.576	30	μA	–40 to 85°C		
/	С	Stop2 mode supply c	urrent		2	0.576	16				
8	Р	Otan Ormania avenue		001	3	1.05	45		-40 to		
	С	Stop3 mode supply c	urrent	S3I _{DD}	2	1.05	27	μΑ	85°C		
9	т	LVD adder to stop3, s LVDSE = 1)	stop2 (LVDE =	S3I _{DDLVD}	3	120	_	μA	_		
		Voltage reference	Low power mode			90					
10	Т	adder to stop3	Tight regulation mode	S3I _{DDLVD}	3	270	—	μA	_		
11	т	PRACMP adder to	PRG disabled	601	0	13					
11		stop3	PRG enabled	S3I _{DDLVD}	3	29	_	μA	_		
12	т	LCD adder to stop3, stop2, VIREG enabled, 1/4 duty cycle, 4x39 configuration for 156 segments, 32Hz frame rate, no LCD glass connected		S3I _{DDLVD}	3	1.3	_	μΑ	_		
13	С	Adder to stop3 for ose (ERCLKEN =1 and E		S3I _{DDOSC}	3	5		μA	_		

Table 11.	Supply	Current	Characteristics
-----------	--------	---------	-----------------

					,			
Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Мах	Unit	Temp (°C)
14	Ρ	IRTC supply current ^{3,4,5}	I _{DD-BAT}		1.5	5	μA	-40 to 85°C

Table 11. Supply Current Characteristics (continued)

¹ Typicals are measured at 25 °C.

² Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

 $^3\,$ This is the current consumed when the IRTC is being powered by the V_{BAT}

⁴ The IRTC power source depends on the MCU configuration and V_{DD} voltage level. Refer to reference manual for further information.

⁵ The IRTC current consumption includes the IRTC XOSC1.

2.7 Analog Comparator (PRACMP) Electricals

Ν	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	_	Supply voltage	V _{PWR}	1.8		3.6	V
2	С	Supply current (active) (PRG enabled)	I _{DDACT1}	_		60	μA
3	С	Supply current (active) (PRG disabled)	I _{DDACT2}	—		40	μA
4	D	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	_	_	2	nA
5		Analog input voltage	VAIN	$V_{\rm SS}-0.3$		V _{DD}	V
6	Т	Analog input offset voltage	VAIO	—	5	40	mV
7	Т	Analog comparator hysteresis	V _H	3.0		20.0	mV
8	D	Analog input leakage current	I _{ALKG}	—		1	nA
9	Т	Analog comparator initialization delay	t _{AINIT}	—		1.0	μs
10		Programmable reference generator input1	$V_{In1}(V_{DD})$	—	V _{DD}	_	V
11	Т	Programmable reference generator input2	V _{In2} (V _{DD25})	1.8		2.75	V
12	D	Programmable reference generator setup delay	t _{PRGST}	_	1	_	μS
13	D	Programmable reference generator step size	Vstep	-0.25	0	0.25	LSB
14	Ρ	Programmable reference generator voltage range	V _{prgout}	V _{In} /32	_	V _{in}	V

Table 12. PRACMP Electrical Specifications

2.8 ADC Characteristics

These specs all assume seperate V_{DDAD} supply for ADC and isolated pad segment for ADC supplies and differential inputs. Spec's should be de-rated for $V_{REFH} = V_{bg}$ condition.

Num	Charact eristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
1	- Supply voltage	Absolute	V_{DDA}	1.8	—	3.6	V	
2		Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
3	Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
4	Ref Voltage High		V _{REFH}	1.15	V _{DDA}	V _{DDA}	V	

 Table 13. 16-bit ADC Operating Conditions

- $^1\,$ All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDAD}
- ² Typical values assume $V_{DDAD} = 3.0V$, Temp = 25°C, $f_{ADCK} = 2.0$ MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- ³ 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^{N}$

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Total Unadjusted	16-bit differential mode 16-bit single-ended mode	Т	TUE	_	±16 ±20	+24/-24 +32/-20	LSB ³	32x Hardware
Error	13-bit differential mode 12-bit single-ended mode	Т		_	±1.5 ±1.75	±2.0 ±2.5		Averaging (AVGE = %1 AVGS = %11)
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.7 ±0.8	±1.0 ±1.25		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.5 ±0.5	±1.0 ±1.0		
Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	DNL	_	±2.5 ±2.5	±3 ±3	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т		_	±0.7 ±0.7	±1 ±1		
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.5 ±0.5	±0.75 ±0.75		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.2 ±0.2	±0.5 ±0.5		
Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	INL	_	±6.0 ±10.0	±12.0 ±16.0	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т		_	±1.0 ±1.0	±2.0 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.5 ±0.5	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.3 ±0.3	±0.5 ±0.5		
Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{ZS}		±4.0 ±4.0	+16/0 +16/-8	LSB ²	V _{ADIN} = V _{SSAD}
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±2.0 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т			±0.4 ±0.4	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.2 ±0.2	±0.5 ±0.5		

Table 15. 16-bit ADC Characteristics($V_{REFH} = V_{DDAD} \ge 2.7V$, $V_{REFL} = V_{SSAD}$, $F_{ADCK} \le 4MHz$, ADHSC=1)

2.13 VREF Characteristics

Num	С	Characteristic	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DDAD}	1.80	_	3.60	V
2		Operating temperature range	T _{op}	-40	_	105	°C
3	D	Load capability	I _{load}	—	_	10	mA
4	C P	Voltage reference output untrimmed factory trimmed	nLi U	1.070 1.04	 1.150	1.202 1.17	V V
5	D	Load regulation mode = 10, I _{load} = 1 mA		20	_	100	μV/mA
6	т	Line regulation (power supply rejection) DC AC		±0.1 from room temp voltage –60		mV dB	
7	Т	Bandgap only (mode = 00)	I _{BG}	—	72	_	μA
8	С	Low power mode (mode = 01)	I _{LP}	—	90	125	μΑ
9	Т	Tight regulation mode (mode =10)	I _{TR}	_	0.27		mA

Table 21. VREF Electrical Specifications

2.14 SPI Characteristics

Table 22 and Figure 19 through Figure 22 describe the timing requirements for the SPI system.

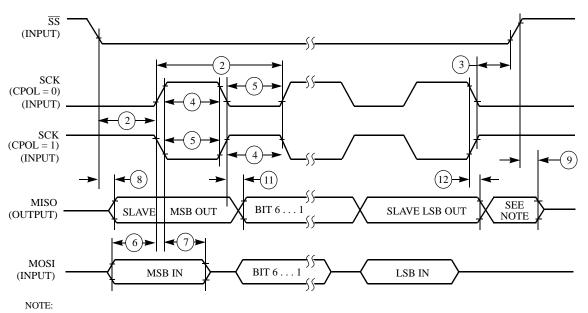
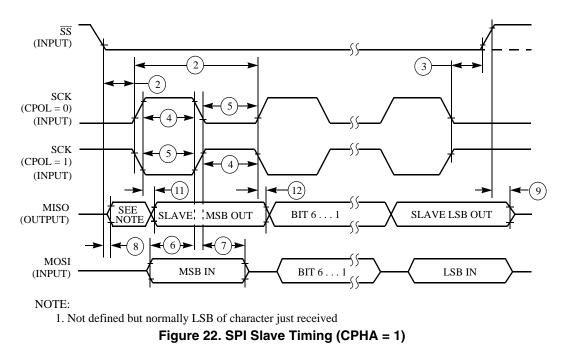

Num ³	С	Characteristic ⁴		Symbol	Min	Max	Unit
1	D	Operating frequency	Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
2	D	SPSCK period	Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc}
3	D	Enable lead time	Master Slave	t _{Lead}	1/2		^t spscк t _{cyc}
4	D	Enable lag time	Master Slave	t _{Lag}	1/2		^t spscк t _{cyc}
5	D	Clock (SPSCK) high or low ti	me Master Slave	t _{WSPSCK}	t _{cyc} – 30	1024 t _{cyc}	ns
6	D	Data setup time (inputs)	Master Slave	t _{SI}	15 15		ns
7	D	Data hold time (inputs)	Master Slave	t _{HI}	0 25		ns
8	D	Slave access time ⁵		t _a	—	1	t _{cyc}
9	D	Slave MISO disable time ⁶		t _{dis}	_	1	t _{cyc}
10	D	Data valid (after SPSCK edge	e) Master Slave	t _v		25 25	ns
11	D	Data hold time (outputs)	Master Slave	t _{HO}	0 0		ns
12	D	Rise time	Input Output	t _{RI} t _{RO}		t _{cyc} – 25 —25	ns
13	D	Fall time	Input Output	t _{FI} t _{FO}		t _{cyc} – 25 —25	ns

 Table 22. SPI Electrical Characteristic^{1,2}


¹ The performance of SPI2 depends on the configuration of power supply of the LCD pins. When the LCD pins are configured with full complementary drive enabled (FCDEN = 1, VSUPPLY = 11 and RVEN = 0), and VLL3 is driven with external VDD, the SPI2 can operate at the max performance as the above table. When the internal LCD charge pump is used to power the LCD pins, the SPI2 is configured with open-drain outputs. Its performance depends on the value of the external pullup resistor implemented, and the max operating frequency must be limited to 1 MHz.

² SPI3 has open-drain outputs and its performance depends on the value of the external pullup resistor implemented.

³ Refer to Figure 19 through Figure 22.

1. Not defined but normally MSB of character just received **Figure 21. SPI Slave Timing (CPHA = 0)**

2.15 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the *MCF51EM256 Series ColdFire Microcontroller Reference Manual*.

Ν	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage for program/erase –40 °C to 85 °C	V _{prog/erase}	1.8		3.6	V
2	D	Supply voltage for read operation	V _{Read}	1.8		3.6	V
3	D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
4	D	Internal FCLK period (1/f _{FCLK})	t _{Fcyc}	5		6.67	μs
5	Р	Longword program time (random location) ²	t _{prog}		9		t _{Fcyc}
6	Р	Longword program time (burst mode) ²	t _{Burst}	4		t _{Fcyc}	
7	Р	Page erase time ²	t _{Page}	4000			t _{Fcyc}
8	Р	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9		Longword program current ³	R _{IDDBP}	_	9.7		mA
10		Page erase current ³	R _{IDDPE}	—	7.6	_	mA
11	С	Program/erase endurance ⁴ T _L to T _H = -40 °C to 85 °C T = 25 °C		10,000	 100,000		cycles
12	С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 23. Flash Characteristics

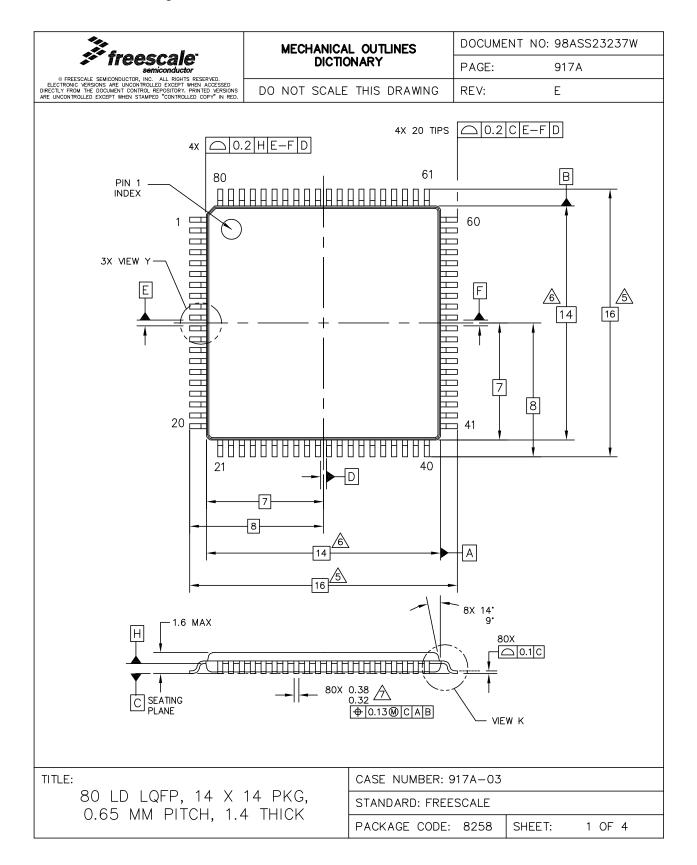
¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

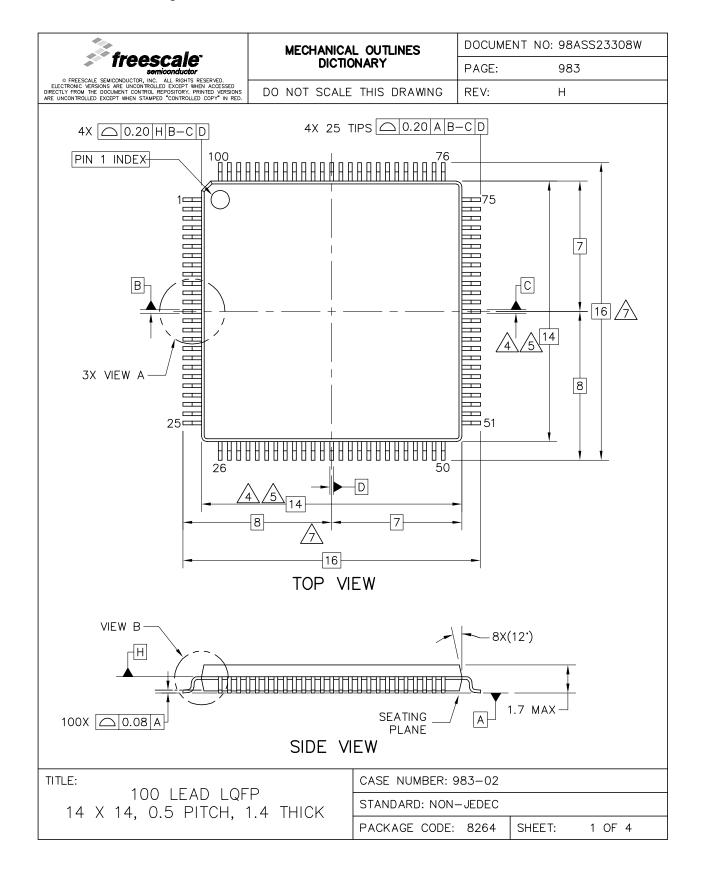
³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0 \text{ V}$, bus frequency = 4.0 MHz.

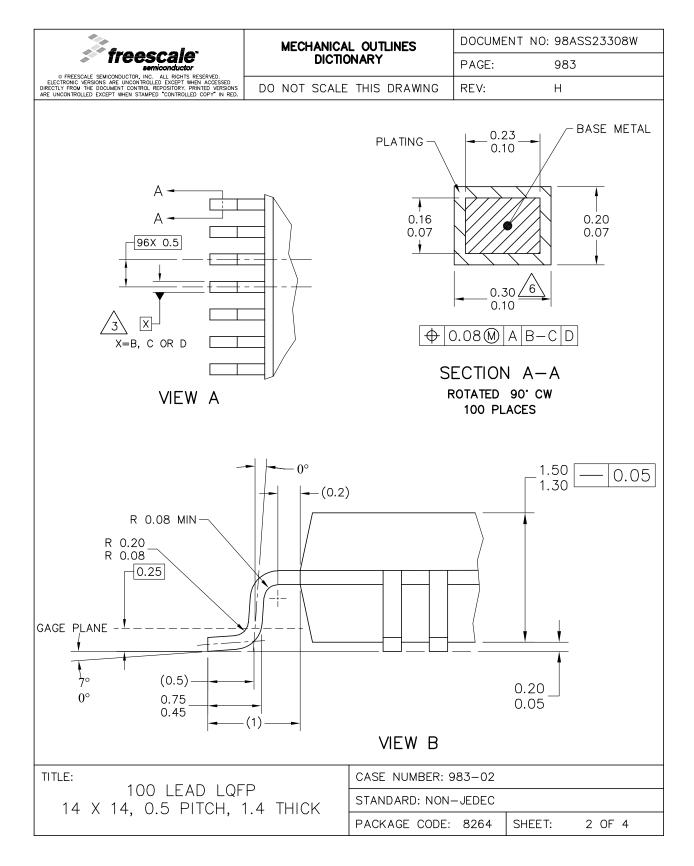
⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*


2.16 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.


2.16.1 Radiated Emissions


Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

- 3 Mechanical Outline Drawings
- 3.1 80-pin LQFP Package

	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23237W					
ireescale semiconductor			PAGE:	917A				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E				
NOTES:								
1. DIMENSIONING AND TOLERAN	1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.							
2. CONTROLLING DIMENSION : N	CONTROLLING DIMENSION : MILIMETER.							
	DATUM PLANE H IS LOCATED AT THE BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.							
4. DATUM E, F AND D TO BE I	DETERMINED AT D	ATUM PLANE H.						
A DIMENSIONS TO BE DETERMIN	NED AT SEATING	PLANE C.						
	DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.							
CAUSE THE LEAD WIDTH TO	DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.							
TITLE:		CASE NUMBER: 9)17A-03					
80 LD LQFP, 14 X		STANDARD: FREESCALE						
0.65 MM PITCH, 1.4	4 IHICK	PACKAGE CODE:	8258	SHEET: 3 OF 4				

