

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, PWM, WDT
Number of I/O	63
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51em256cll

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCF	51EM256 Series Configurations
	1.1	Device Comparison
	1.2	Block Diagram
	1.3	Features
		1.3.1 Feature List
	1.4	Part Numbers
	1.5	Pinouts and Packaging11
		1.5.1 Pinout: 80-Pin LQFP11
		1.5.2 Pinout: 100-Pin LQFP
2	Elect	rical Characteristics
	2.1	Parameter Classification
	2.2	Absolute Maximum Ratings17
	2.3	Thermal Characteristics
	2.4	Electrostatic Discharge (ESD) Protection Characteristics
		19
	2.5	DC Characteristics
	2.6	Supply Current Characteristics
	2.7	Analog Comparator (PRACMP) Electricals27
	2.8	ADC Characteristics

	2.9 2.10	External Oscillator (XOSC) Characteristics
	2.11	LCD Specifications
	2.12	AC Characteristics
		2.12.1 Control Timing
		2.12.2 Timer (TPM/FTM) Module Timing 39
	2.13	VREF Characteristics
	2.14	SPI Characteristics
	2.15	Flash Specifications
	2.16	EMC Performance
		2.16.1 Radiated Emissions
3	Mech	anical Outline Drawings 45
	3.1	80-pin LQFP Package
	3.2	100-pin LQFP Package
4	Revis	sion History

MCF51EM256 Series Configurations

Feature	MCF51EM256 MCF51EM128						
MTIM1 (8-bit)	Yes						
MTIM2 (8-bit)	(8-bit) Yes						
MTIM3 (16-it)	Yes						
TPM channels	2						
PDB	Ye	es					
XOSC1 ⁴	Ye	es					
XOSC2 ⁵	Ye	es					

Table 1. MCF51EM256 Series Features by MCU and Package (continued)

¹ Each differential channel is comprised of 2 pin inputs

² RGPIO is muxed with standard Port I/O

³ Port I/O count does not include the ouput only PTC2/BKGD/MS.

⁴ IRTC crystal input and possible crystal input to the ICS module

⁵ Main external crystal input for the ICS module

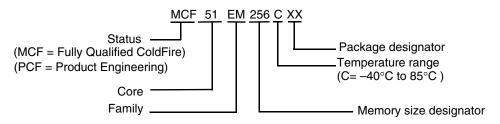

1.2 Block Diagram

Figure 1 shows the connections between the MCF51EM256 series pins and modules.

front-plane/backplane pin assignments; operation in all low power modes with blink functionality

- SCIx Three serial communications interface modules with optional 13-bit break; option to connect Rx input to PRACMP output on SCI1 and SCI2; high current drive on Tx on SCI1 and SCI2; wakeup from stop3 on Rx edge. SCI1 and SCI2 Tx pins can be modulated with timer outputs for use with IR interfaces
- SPIx— Two serial peripheral interfaces (SPI2, SPI3) with full-duplex or single-wire bidirectional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting
- SPI16— Serial peripheral interface (SPI1) with 32-bit FIFO buffer; 16-bit or 8-bit data transfers; full-duplex or single-wire bidirectional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting
- IIC Up to 100 kbps with maximum bus loading; multi-master operation; programmable slave address; interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing
- MTIMx Two 8-bit and one 16-bit modulo timers with 4-bit prescaler; overflow interrupt; external clock input/pulse accumulator
- TPM 2-channel Timer/PWM module; selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel; external clock input/pulse accumulator; can be used modulate SCI1 and SCI2 TX pins
- Input/output
 - up to 16 rapid GPIO and 48 standard GPIOs, including 1 output-only pin and 3 open-drain pins.
 - up to 16 keyboard interrupts with selectable polarity
 - Hysteresis and configurable pullup device on all input pins; configurable slew rate and drive strength on all output pins
- Package options
 - 100-pin LQFP, 80-pin LQFP

1.4 Part Numbers

MCF51EM256 Series Configurations

Freescale Part Number	Flash / SRAM (KB)	Package	Temperature
MCF51EM256CLL	256/16	100-Pin LQFP	–40°C to 85°C
MCF51EM256CLK	256/16	80-Pin LQFP	–40°C to 85°C
MCF51EM128CLL	128/16	100-Pin LQFP	–40°C to 85°C
MCF51EM128CLK	128/16	80-Pin LQFP	–40°C to 85°C

Table 3. Orderable Part Number Summary

1.5 **Pinouts and Packaging**

1.5.1 Pinout: 80-Pin LQFP

Pins not available on the 80-pin LQFP are automatically disabled for reduced current consumption. No user interaction is needed. Software access to the functions on these pins will be ignored

Figure 2 shows the pinout of the 80-pin LQFP.

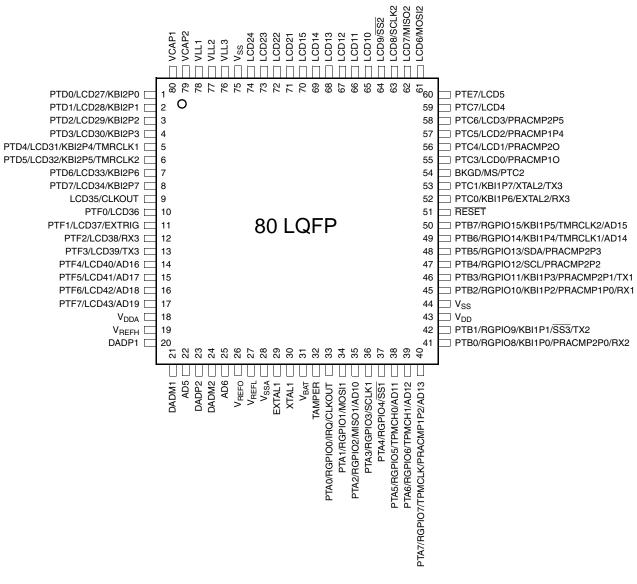


Figure 2. 80-Pin LQFP Pinout

MCF51EM256 Series Configurations

1.5.2 Pinout: 100-Pin LQFP

Figure 3 shows the pinout configuration for the 100-pin LQFP. Pins which are blacked out do not have an equivalent pin on the 80-pin LQFP package.

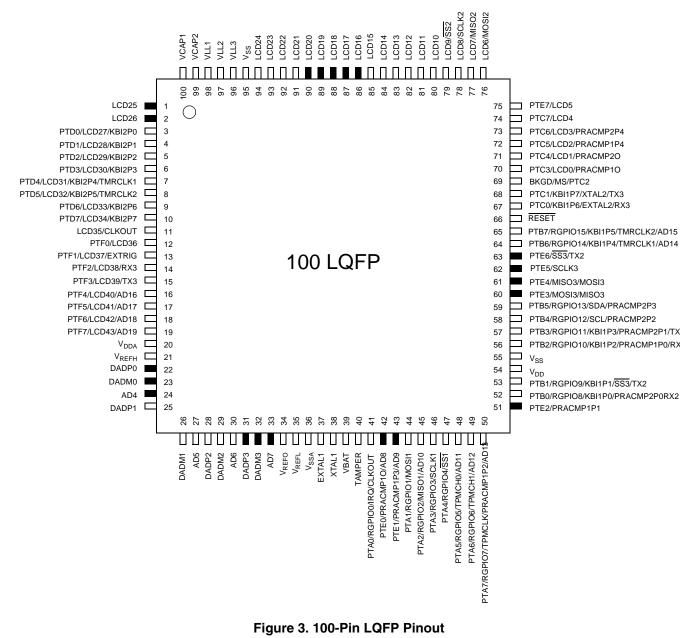


Table 4 shows the package pin assignments.

MCF51EM256 Series ColdFire Microcontroller Data Sheet, Rev.3

80					
LQFP	Default Function	ALT1	ALT2	ALT3	Comment
—	LCD17				
—	LCD18				
—	LCD19				
—	LCD20				
71	LCD21				
72	LCD22				
73	LCD23				
74	LCD24				
75	V _{SS}				
76	VLL3				
77	VLL2				
78	VLL1				
79	VCAP2				
80	VCAP1				
		LCD17 LCD18 LCD19 LCD20 71 LCD21 72 LCD22 73 LCD23 74 LCD24 75 V _{SS} 76 VLL3 77 VLL2 78 VLL1 79 VCAP2	LCD17 LCD18 LCD19 LCD20 71 LCD21 72 LCD22 73 LCD23 74 LCD24 75 V _{SS} 76 VLL3 77 VLL2 78 VLL1 79 VCAP2	LCD17 LCD18 LCD18	LCD17 I I LCD18 I I LCD19 I I LCD20 I I LCD21 I I T1 LCD21 I I 72 LCD22 I I 73 LCD23 I I 74 LCD24 I I 75 V _{SS} I I 76 VLL3 I I 77 VLL2 I I 78 VLL1 I I 79 VCAP2 I I

Table 4. MCF51EM256 Series Package Pin Assignments (continued)

¹ These pins that are shared with the LCD are open-drain by default if not used as LCD pins. To configure this pins as full complementary drive outputs, you must have the LCD modules bits configured as follow: FCDEN =1, VSUPPLY = 11 and RVEN = 0. The Input levels and internal pullup resistors are referenced to VLL3. Referer to the LCD chapter for further information.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF51EM256/128 series microcontrollers, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Num	С		Parameter	Symbol	Min	Typical ¹	Max	Unit
	~	Low-voltage	Low range — V _{DD} falling		1.800	1.845	1.890	V
22	С	detection threshold Low range — V _{DD} rising	V _{LVDL}	1.870	1.915	1.960	V	
	_	Low-voltage	V _{DD} falling, LVWV = 1		2.590	2.655	2.720	
23	Ρ	warning threshold	V _{DD} rising, LVWV = 1	V _{LVWH}	2.580	2.645	2.710	V
24	С	Low-voltage warning	V_{DD} falling, LVWV = 0	V _{LVWL}	2.300	2.355	2.410	v
24	C		V _{DD} rising, LVWV = 0	V LVWL	2.360	2.425	2.490	v
25	D	RAM retention	voltage	V _{RAM}	_	0.6	1.0	V
26	D	$ \begin{array}{l} DC \text{ injection current}^{7 \ 8 \ 9 \ 10} \text{ (single pin limit),} \\ V_{\text{IN}} > V_{\text{DD}}, V_{\text{IN}} < V_{\text{SS}} \\ \hline DC \text{ injection current (Total MCU limit, includes sum of all stressed pins), } V_{\text{IN}} > V_{\text{DD}}, V_{\text{IN}} < V_{\text{SS}} \\ \end{array} $		- I _{IC}	-0.2	_	0.2	mA
20					-5	—	5	mA

Table 10. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25 °C unless otherwise stated.

 $^2~$ Switch to lower frequency when the low-voltage interrupt asserts (V_LVDH).

 3 Factory trimmed at V_DD = 3.0 V, Temp = 25°C

⁴ Measured with $V_{In} = V_{DD}$ or V_{SS} .

⁵ Measured with $V_{In} = V_{SS}$.

⁶ Measured with $V_{In} = V_{DD}$.

⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 $^{8}\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

⁹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

¹⁰ The RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

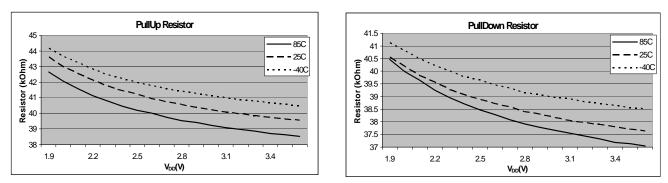


Figure 4. Pullup and Pulldown Typical Resistor Values

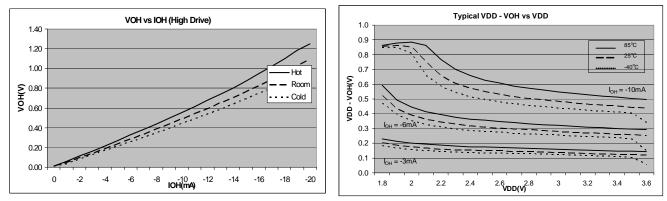


Figure 8. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

2.6 Supply Current Characteristics

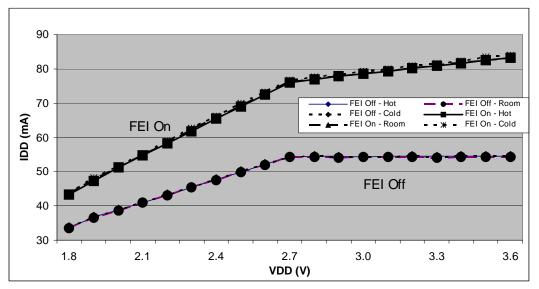


Figure 9. Typical Run I_{DD} for FBE and FEI, I_{DD} vs. V_{DD} (All Modules Enabled)

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Мах	Unit	Тетр (°С)
14	Ρ	IRTC supply current ^{3,4,5}	I _{DD-BAT}		1.5	5	μA	–40 to 85°C

Table 11. Supply Current Characteristics (continued)

¹ Typicals are measured at 25 °C.

² Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

 $^3\,$ This is the current consumed when the IRTC is being powered by the V_{BAT}

⁴ The IRTC power source depends on the MCU configuration and V_{DD} voltage level. Refer to reference manual for further information.

⁵ The IRTC current consumption includes the IRTC XOSC1.

2.7 Analog Comparator (PRACMP) Electricals

Ν	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	—	Supply voltage	V _{PWR}	1.8		3.6	V
2	С	Supply current (active) (PRG enabled)	I _{DDACT1}	_		60	μA
3	С	Supply current (active) (PRG disabled)	I _{DDACT2}	—		40	μA
4	D	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	_	_	2	nA
5		Analog input voltage	VAIN	$V_{\rm SS}-0.3$		V _{DD}	V
6	Т	Analog input offset voltage	VAIO	—	5	40	mV
7	Т	Analog comparator hysteresis	V _H	3.0		20.0	mV
8	D	Analog input leakage current	I _{ALKG}	—		1	nA
9	Т	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μs
10		Programmable reference generator input1	$V_{In1}(V_{DD})$	—	V _{DD}	_	V
11	Т	Programmable reference generator input2	V _{In2} (V _{DD25})	1.8		2.75	V
12	D	Programmable reference generator setup delay	t _{PRGST}	_	1	_	μs
13	D	Programmable reference generator step size	Vstep	-0.25	0	0.25	LSB
14	Ρ	Programmable reference generator voltage range	V _{prgout}	V _{In} /32	_	V _{in}	V

Table 12. PRACMP Electrical Specifications

2.8 ADC Characteristics

These specs all assume seperate V_{DDAD} supply for ADC and isolated pad segment for ADC supplies and differential inputs. Spec's should be de-rated for $V_{REFH} = V_{bg}$ condition.

Num	Charact eristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
1	Supply	Absolute	V_{DDA}	1.8	—	3.6	V	
2	voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
3	Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
4	Ref Voltage High		V _{REFH}	1.15	V _{DDA}	V _{DDA}	V	

 Table 13. 16-bit ADC Operating Conditions

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Full-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{FS}		+10/0 +14/0	+42/-2 +46/-2	LSB ²	V _{ADIN} = V _{DDAD}
EIIOI	13-bit differential mode 12-bit single-ended mode	т			±1.0 ±1.0	+40/-2 ±3.5 ±3.5	-	
	11-bit differential mode 10-bit single-ended mode	Т			±0.4 ±0.4	±1.5 ±1.5		
	9-bit differential mode 8-bit single-ended mode	Т			±0.2 ±0.2	±0.5 ±0.5		
Quantization	16 bit modes	D	EQ	_	-1 to 0	_	LSB ²	
Error	≤13 bit modes				—	±0.5		
Effective Number of Bits	16 bit differential mode Avg=32 Avg=16 Avg=8 Avg=4 Avg=1	С	ENOB	12.8 12.7 12.6 12.5 11.9	14.2 13.8 13.6 13.3 12.5	 	Bits	F _{in} = F _{sample} /100
	16 bit single-ended mode Avg=32 Avg=16 Avg=8 Avg=4 Avg=1	С		 	TBD TBD TBD TBD TBD TBD	 		
Signal to Noise plus Distortion	See ENOB		SINAD	SINAD =	= 6.02 · ENG	<i>DB</i> +1.76	dB	
Total Harmonic Distortion	16-bit differential mode Avg = 32	С	THD		-91.5	-74.3	dB	F _{in} = F _{sample} /100
	16-bit single-ended mode Avg = 32	D		_	-85.5			
Spurious Free Dynamic	16-bit differential mode Avg = 32	С	SFDR	75.0	92.2	_	dB	F _{in} = F _{sample} /100
Range	16-bit single-ended mode Avg = 32	D		_	86.2	_		
Input Leakage Error	all modes	D	E _{IL}		I _{In} * R _{AS}		mV	I _{In} = leakage current (refer to DC characteristics)
Temp Sensor	-40°C– 25°C	С	m	—	1.646	—	mV/°C	
Slope	25°C– 125°C	1		—	1.769	—	1	
Temp Sensor Voltage	25°C	С	V _{TEMP25}	_	701.2	—	mV	

Table 14. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDAD} > 1.8$, $V_{REFL} = V_{SSAD}$, $F_{ADCK} \le 8MHz$)

2.13 VREF Characteristics

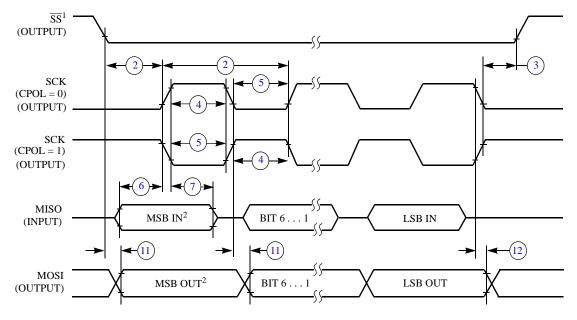
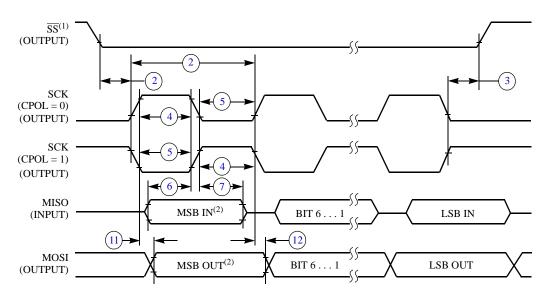

Num	С	Characteristic	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DDAD}	1.80	_	3.60	V
2	_	Operating temperature range	T _{op}	-40	_	105	°C
3	D	Load capability	I _{load}	_	_	10	mA
4	C P	Voltage reference output untrimmed factory trimmed	nLi U	1.070 1.04	 1.150	1.202 1.17	V V
5	D	Load regulation mode = 10, I _{load} = 1 mA		20	_	100	μV/mA
6	т	Line regulation (power supply rejection) DC AC		±0.1 from room temp voltage –60			mV dB
7	Т	Bandgap only (mode = 00)	I _{BG}	_	72	_	μΑ
8	С	Low power mode (mode = 01)	I _{LP}	_	90	125	μΑ
9	Т	Tight regulation mode (mode =10)	I _{TR}	_	0.27	_	mA

Table 21. VREF Electrical Specifications

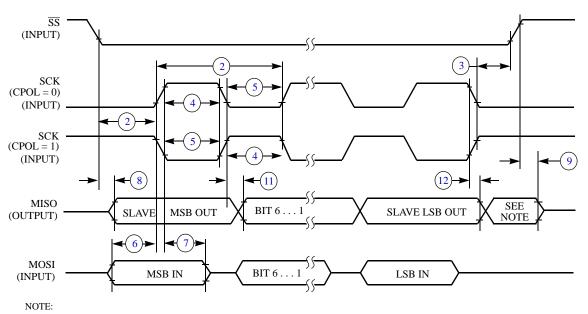
2.14 SPI Characteristics

Table 22 and Figure 19 through Figure 22 describe the timing requirements for the SPI system.

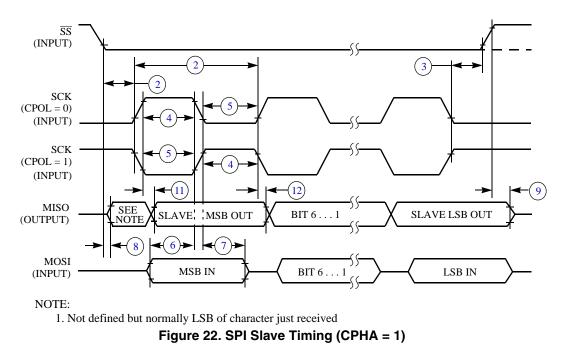

- ⁴ All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.
- ⁵ Time to data active from high-impedance state.
- ⁶ Hold time to high-impedance state.

NOTES:

- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



NOTES:


1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 20. SPI Master Timing (CPHA = 1)

1. Not defined but normally MSB of character just received **Figure 21. SPI Slave Timing (CPHA = 0)**

2.15 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the *MCF51EM256 Series ColdFire Microcontroller Reference Manual*.

Ν	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage for program/erase -40 °C to 85 °CVprog/erase1.83.6		3.6	V		
2	D	Supply voltage for read operation	V _{Read}	1.8 3.6			V
3	D	Internal FCLK frequency ¹	f _{FCLK}	150 200		200	kHz
4	D	Internal FCLK period (1/f _{FCLK})	eriod (1/f _{FCLK}) t _{Fcyc} 5 6.67		μs		
5	Р	Longword program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	Р	Longword program time (burst mode) ²	t _{Burst}	4		t _{Fcyc}	
7	Р	Page erase time ²	t _{Page}	4000			t _{Fcyc}
8	Р	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9		Longword program current ³ R _{IDDBP} — 9.7 —			mA		
10		Page erase current ³	R _{IDDPE}	_	7.6	_	mA
11	С	Program/erase endurance ⁴ T _L to T _H = -40 °C to 85 °C T = 25 °C		10,000	 100,000		cycles
12	С	Data retention ⁵	t _{D_ret}	15 100 —		years	

Table 23. Flash Characteristics

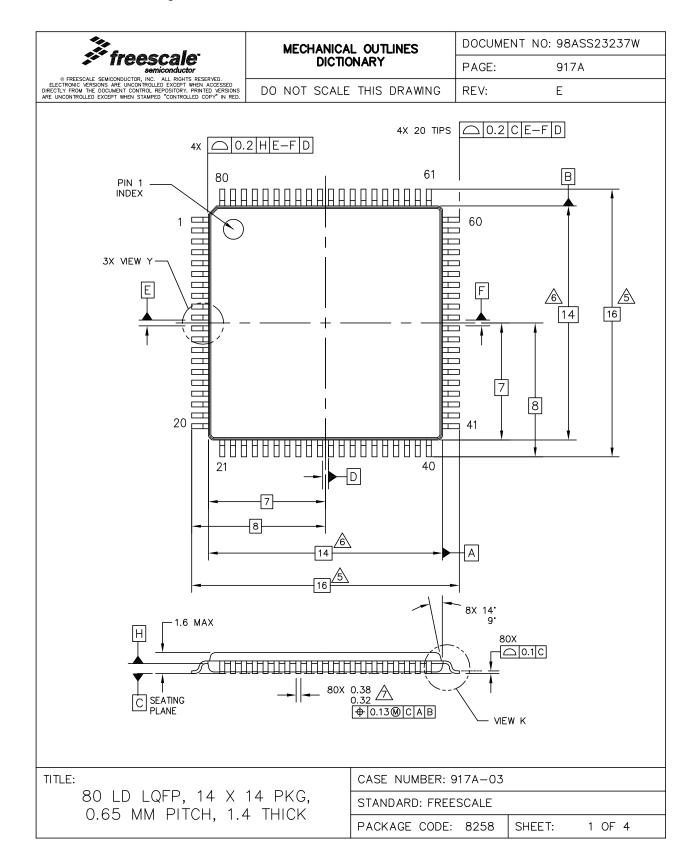
¹ The frequency of this clock is controlled by a software setting.

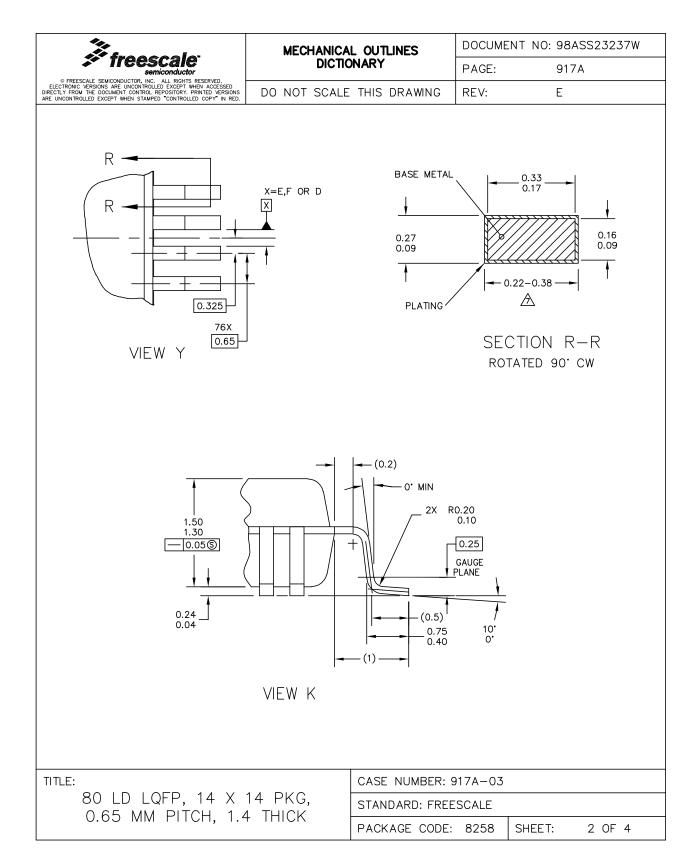
² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with V_{DD} = 3.0 V, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*


2.16 EMC Performance


Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.16.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

Mechanical Outline Drawings

Mechanical Outline Drawings

	MECHANICA	MECHANICAL OUTLINES		DOCUMENT NO: 98ASS23237W				
ireescale semiconductor	DICTIONARY		PAGE:	917A				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROLLED REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E				
NOTES:								
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.								
2. CONTROLLING DIMENSION : N	CONTROLLING DIMENSION : MILIMETER.							
	DATUM PLANE H IS LOCATED AT THE BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.							
4. DATUM E, F AND D TO BE I	DATUM E, F AND D TO BE DETERMINED AT DATUM PLANE H.							
5. DIMENSIONS TO BE DETERMI	DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.							
	DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.							
CAUSE THE LEAD WIDTH TO	DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.							
TITLE: 80 LD LQFP, 14 X		CASE NUMBER: 917A-03						
0.65 MM PITCH, 1.4		STANDARD: FREE		0.1555				
,		PACKAGE CODE:	8258	SHEET: 3	3 OF 4			

4 Revision History

Table 24. Revision History

Revision	Date	Description
1	10/15/2009	Initial public release.
2	4/29/2010	Updated teh descriptions of SPI in the Table 2. Changed the FSPIx to SPI16 to keep the term in accordance. Updated Figure 4 to Figure 8. Updated WI _{DD} , S2I _{DD} , S3I _{DD} in the Table 11. Updated the ADC characteristics in the Table 13 to Table 15. Updated description of XOSC in the Section 2.9, "External Oscillator (XOSC) Characteristics." Updated t _{CSTL} in the Table 16. Updated the the classification of IBG and ITR to T and added Voltage reference output (factory trimmed) in the Table 21. Update SPI data in the Table 22.
3	8/9/2010	Updated the V _{DD} at 20 MHz maximum operation to 3.6 V. Updated the RI _{DD} (at Run supply current FEI mode, all module on), S2I _{DD} and S3I _{DD} at 3 V, S3I _{DDLVD} in the Table 11. Updated ENOB at 16 bit single-ended mode in the Table 14.