

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at80c51rd2-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3-1. Pin Description (Continued)

		Pin Numb	er		
Mnemonic	DIL	PLCC44	VQFP44 1.4	Туре	Name and Function
P2.0 - P2.7	21 - 28	24 - 31	18 - 25	I/O	Port 2 : Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during ROM reading and verification: P2.0 to P2.5 for 16 KB devices
P3.0 - P3.7	10 - 17	11, 13 - 19	5, 7 - 13	I/O	Port 3: Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	I	RXD (P3.0): Serial input port
	11	13	7	0	TXD (P3.1): Serial output port
	12	14	8	I	INTO (P3.2): External interrupt 0
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
RST	9	10	4	I/O	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . This pin is an output when the hardware watchdog forces a system reset.
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during Flash programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Strobe Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA	31	35	29	I	External Access Enable: \overline{EA} must be externally held low to enable the device to fetch code from external program memory locations. If security level 1 is programmed, \overline{EA} will be internally latched on Reset.

4. SFR Mapping

The Special Function Registers (SFRs) of the microcontroller fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4)
- Power and clock control registers: PCON
- Hardware Watchdog Timer registers: WDTRST, WDTPRG
- Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1
- Keyboard Interface registers: KBE, KBF, KBLS
- BRG (Baud Rate Generator) registers: BRL, BDRCON
- Clock Prescaler register: CKRL
- Others: AUXR, AUXR1, CKCON0, CKCON1

Table 3 shows all SFRs with their address and their reset value.

Table 4-1.SFR Mapping

	Bit Addressable			No	on-bit Addressa	ble			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h		CL 0000 0000	CCAPOL XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IPL0 X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111	IE1 XXXX XXX0b	IPL1 XXXX XXX0b	IPH1 XXXX XXX0b				IPH0 X000 0000	B7h
A8h	IE0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh
90h	P1 1111 1111							CKRL 1111 1111	97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX0X 0000	CKCON0 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

7. Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 7-1) that allows the program code to switch between them (Refer to Figure 7-1).

Table 7-1.AUXR1 RegisterAUXR1- Auxiliary Register 1(0A2h)

7	6	5	4	3	2	1	0		
-	-	-	-	GF3	0	-	DPS		
Bit Number	Bit Mnemonic	Descriptio	n						
7	-	Reserved The value r	read from this b	bit is indetermin	ate. Do not set	this bit.			
6	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved	Reserved						
4	-	Reserved The value r	ead from this b	pit is indetermin	ate. Do not set	this bit.			
3	GF3	This bit is a	general purpo	ose user flag.					
2	0	Always clea	ared ⁽¹⁾ .						
1	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	DPS	Data Point Cleared to Set to selec	er Selection select DPTR0. ct DPTR1.						

Reset Value: XXXX XXXX0b

Not bit addressable

Note: 1. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

9. Timer 2

The Timer 2 in the AT80C51RD2 is the standard C52 Timer 2.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 are cascaded. It is controlled by T2CON (Table 9-1) and T2MOD (Table 9-2) registers. Timer 2 operation is similar to Timer 0 and Timer 1. $C/\overline{T2}$ selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, auto-reload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).

Refer to the Atmel 8-bit Microcontroller Hardware description for Capture and Baud Rate Generator Modes.

Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

9.1 Auto-reload Mode

The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel 8-bit Microcontroller Hardware description). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 9-1. In this mode the T2EX pin controls the direction of count.

When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

10.3 High-speed Output Mode

In this mode, the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see Figure 10-5).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Figure 10-5. PCA High-speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could occur.

Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing the CCAPMn register.

10.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 10-6 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Table 11-4.SCON RegisterSCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemonic	Description	escription						
7	FE	Framing Err Clear to rese Set by hardw SMOD0 mus	or bit (SMOD0 t the error state vare when an ir t be set to enal	 = 1) e, not cleared by avalid stop bit is ble access to the 	y a valid stop b detected. e FE bit	it.			
	SM0	Serial port M Refer to SM1 SMOD0 mus	lode bit 0 for serial port t be cleared to	mode selection enable access	to the SM0 bit				
6	SM1	Serial port M SM1ModeDe 0 0Shift Re 1 18-bit UA 0 29-bit UA 1 39-bit UA	erial port Mode bit 1 M1ModeDescriptionBaud Rate OShift Registerf _{CPU PERIPH/6} 18-bit UARTVariable 29-bit UARTf _{CPU PERIPH /32 or /16} 39-bit UARTVariable						
5	SM2	Serial port M Clear to disal Set to enable mode 1. This	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.						
4	REN	Reception E Clear to disal Set to enable	nable bit ble serial receptions serial receptions	otion. on.					
3	TB8	Transmitter o transmit a I Set to transm	Bit 8/Ninth bit ogic 0 in the 9t hit a logic 1 in tl	to transmit in h bit. he 9th bit.	modes 2 and	3			
2	RB8	Receiver Bit Cleared by h Set by hardw In mode 1, if	8/Ninth bit re ardware if 9th b vare if 9th bit re SM2=0, RB8 is	ceived in mod bit received is a ceived is a logic s the received s	es 2 and 3 logic 0. c 1. top bit. In mode	e 0 RB8 is not u	used.		
1	ті	Transmit Int Clear to ack Set by hardw bit in the othe	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.						
0	RI	Receive Inter Clear to ackr Set by hardw 11-3. in the c	errupt flag nowledge interr vare at the end other modes.	upt. of the 8th bit tir	ne in mode 0, s	see Figure 11-2	. and Figure		

Reset Value = 0000 0000b

Bit addressable

Table 11-9.SBUF Register

SBUF - Serial Buffer Register for UART (99h)

7	6	5	4	3	2	1	0

Reset Value = XXXX XXXXb

Table 11-10. BRL Register

BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 11-11. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#		
Bit Number	Bit Mnemonic	Description							
7	TF2	Timer 2 over Must be clea Set by hardw	flow Flag red by software are on Timer 2	e. ! overflow, if RC	LK=0 and TCL	K=0.			
6	EXF2	Timer 2 Exte Set when a c = 1. When set, ca is enabled. Must be clea mode (DCEN	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2 = 1. When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt s enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN=1)						
5	RCLK	Receive Clo Cleared to us Set to use Ti	Receive Clock bit for UART Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.						
4	TCLK	Transmit Clo Cleared to us Set to use Ti	ock bit for UAF se timer 1 overf mer 2 overflow	RT flow as transmit as transmit clo	clock for serial ck for serial por	port in mode 1 t in mode 1 or 3	or 3. 3.		
3	EXEN2	Timer 2 External Cleared to ig Set to cause Timer 2 is not	ernal Enable b nore events on a capture or re t used to clock	it T2EX pin for T load when a ne the serial port.	imer 2 operatio egative transitio	n. n on T2EX pin	is detected, if		
2	TR2	Timer 2 Run Cleared to tu Set to turn or	control bit rn off Timer 2. n Timer 2.						
1	C/T2#	Timer/Count Cleared for ti Set for count clock out mo	Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: F _{CLK PERIPH}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.						
0	CP/RL2#	Timer 2 Cap If RCLK = 1 Timer 2 over Cleared to au EXEN2 = 1. Set to captur	ture/Reload b or TCLK = 1, (low. uto-reload on T e on negative t	it CP/RL2# is igno imer 2 overflow ransitions on Ta	ored and timer i rs or negative tr 2EX pin if EXEI	is forced to auto ansitions on T2 N2 = 1.	p-reload on EX pin if		

Reset Value = 0000 0000b Bit addressable Reset Value = 0000 0000b Bit addressable

Table 12-3.IPL0 RegisterIPL0 - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0		
-	PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	leserved The value read from this bit is indeterminate. Do not set this bit.						
6	PPCL	PCA interru Refer to PPC	CA interrupt priority bit Refer to PPCH for priority level.						
5	PT2L	Timer 2 ove Refer to PT2	Timer 2 overflow interrupt priority bit Refer to PT2H for priority level.						
4	PSL	Serial port p Refer to PSH	priority bit I for priority le	evel.					
3	PT1L	Timer 1 ove Refer to PT1	rflow interru H for priority	pt priority bit level.					
2	PX1L	External int Refer to PX1	errupt 1 prio H for priority	rity bit level.					
1	PTOL	Timer 0 ove Refer to PT0	Timer 0 overflow interrupt priority bit Refer to PT0H for priority level.						
0	PX0L	External int Refer to PX0	errupt 0 prio)H for priority	rity bit level.					

Reset Value = X000 0000b Bit addressable

Table 12-4.IPH0 Register

ſ

IPH0 - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H

13.1 Registers

Table 13-1. KBF Register

KBF - Keyboard Flag Register (9Eh)

7	6	5	4	3	2	1	0		
KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0		
Bit Number	Bit Mnemonic	Description							
7	KBF7	Keyboard li Set by hardw Keyboard int Must be clea	ne 7 flag /are when the errupt reques red by softwa	Port line 7 de t if the KBKBII re.	tects a progra E.7 bit in KBIE	mmed level. It Fregister is se	generates a t.		
6	KBF6	Keyboard li Set by hardw Keyboard int Must be clea	Ceyboard line 6 flag Set by hardware when the Port line 6 detects a programmed level. It generates a Ceyboard interrupt request if the KBIE.6 bit in KBIE register is set. Must be cleared by software.						
5	KBF5	Keyboard lin Set by hardw Keyboard int Must be clea	Keyboard line 5 flag Set by hardware when the Port line 5 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.5 bit in KBIE register is set. Must be cleared by software.						
4	KBF4	Keyboard lin Set by hardw Keyboard int Must be clea	Keyboard line 4 flag Set by hardware when the Port line 4 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.4 bit in KBIE register is set. Must be cleared by software.						
3	KBF3	Keyboard lin Set by hardw Keyboard int Must be clea	ne 3 flag vare when the errupt reques red by softwa	Port line 3 de t if the KBIE.3 re.	ects a progra bit in KBIE re	mmed level. It gister is set.	generates a		
2	KBF2	Keyboard lin Set by hardw Keyboard int Must be clea	ne 2 flag vare when the errupt reques red by softwa	Port line 2 de t if the KBIE.2 re.	ects a progra bit in KBIE re	mmed level. It gister is set.	generates a		
1	KBF1	Keyboard lin Set by hardw Keyboard int Must be clea	Keyboard line 1 flag Set by hardware when the Port line 1 detects a programmed level. It generates a Keyboard interrupt request if the KBIE.1 bit in KBIE register is set. Must be cleared by software.						
0	KBF0	Keyboard lin Set by hardw Keyboard int Must be clea	ne 0 flag vare when the errupt reques red by softwa	Port line 0 de t if the KBIE.0 re.	tects a progra bit in KBIE re	mmed level. It gister is set.	generates a		

Reset Value = 0000 0000b

All other pins are disconnected.

Figure 17-2. I_{CC} Test Condition, Idle Mode

All other pins are disconnected.

Figure 17-3. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

AT80C51RD2

Symbol	Туре	Standard Clock	X2 Clock	X parameter for - M range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	ns
T _{RHDX}	Min	x	х	0	ns
T _{RHDZ}	Max	2 T - x	T - x	25	ns
T _{LLDV}	Max	8 T - x	4T -x	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	ns
T _{RLAZ}	Max	x	x	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	ns

17.3.5 External Data Memory Write Cycle

17.3.6 External Data Memory Read Cycle

17.3.7 Serial Port Timing - Shift Register Mode Table 17-7. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 17-8.AC Parameters for a Fix Clock

	-М		
Symbol	Min	Max	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns

19. Package Information

19.1 PDIL40

40 PINS PLASTIC, 600

	ММ		INCH	
A	_	5, 08	_	, 200
A1	0, 38	-	, 015	_
A2	3, 18	4, 95	, 125	, 195
В	0, 36	0, 56	. 014	. 022
B1	0, 76	1, 78	, 030	, 070
С	0, 20	0, 38	. 008	. 015
D	50, 29	53, 21	1, 980	2, 095
E	15, 24	15, 87	, 600	, 625
E 1	12, 32	14.73	, 485	, 580
e	2, 54	B, S, C	, 100	B, S, C
еA	15, 24	B, S, C	, 600	B. S. C
еB	_	17, 78	_	, 700
L	2, 93	3, 81	, 115	. 150
D 1	0,13	-	, 005	_
PKG STD		02		

64 AT80C51RD2

19.2 PLCC44

	ММ		INCH	
A	4, 20	4. 57	. 165	, 180
A 1	2, 29	3.04	, 090	, 120
D	17.40	17.65	, 685	, 695
D 1	16.44	16, 66	, 647	, 656
D2	14.99	16.00	. 590	, 630
E	17.40	17,65	, 685	. 695
E 1	16.44	16, 66	, 647	, 656
E2	14.99	16.00	. 590	, 630
e	1. 27	BSC	. 050	BSC
н	1. 07	1.42	. 042	. 056
J	0.51	-	. 020	_
К	0, 33	0, 53	. 013	. 021
Nd	1 1		1 1	
Ne		1 1 1 1 1		1
P	KG STD	00		

STANDARD NOTES FOR PQFP/ VQFP / TQFP / DQFP

1/ CONTROLLING DIMENSIONS : INCHES

2/ ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y 14.5M - 1982.

3/ "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH). THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.

4/ DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.

5/ DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.

6/ DIMENSION " f " DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE DAMBAR PROTUSION SHALL BE 0.08mm/.003" TOTAL IN EXCESS OF THE " f " DIMENSION AT MAXIMUM MATERIAL CONDITION . DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.