

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Active Core Processor ARM® Cortex®-M0+ Core Size 32-Bit Single-Core Speed 48MHz Connectivity I²C, SPI, UART/USART	
Core Size32-Bit Single-CoreSpeed48MHzConnectivityI²C, SPI, UART/USART	
Speed 48MHz Connectivity I ² C, SPI, UART/USART	
Connectivity I ² C, SPI, UART/USART	
Peripherals Brown-out Detect/Reset, POR, WDT	
Number of I/O 52	
Program Memory Size 64KB (64K x 8)	
Program Memory Type FLASH	
EEPROM Size -	
RAM Size 8K x 8	
Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V	
Data ConvertersA/D 20x12b; D/A 1x10b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 85°C (TA)	
Mounting Type Surface Mount	
Package / Case 64-VFQFN Exposed Pad	
Supplier Device Package64-VQFN (9x9)	
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsamd20j16b-mut	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Description

The Atmel[®] | SMART[™] SAM D20 is a series of low-power microcontrollers using the 32-bit ARM[®] Cortex[®]-M0+ processor, and ranging from 32- to 64-pins with up to 256KB Flash and 32KB of SRAM. The SAM D20 devices operate at a maximum frequency of 48MHz and reach 2.46 CoreMark/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

The SAM D20 devices provide the following features: In-system programmable Flash, eight-channel Event System, programmable interrupt controller, up to 52 programmable I/O pins, 32-bit real-time clock and calendar, up to eight 16-bit Timer/Counters (TC). The timer/counters can be configured to perform frequency and waveform generation, accurate program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC. The series provide up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI, I²C up to 400kHz, up to twenty-channel 350ksps 12-bit ADC with programmable gain and optional oversampling and decimation supporting up to 16-bit resolution, one 10-bit 350ksps DAC, two analog comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and two-pin Serial Wire Debug (SWD) program and debug interface.

All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus maintaining a high CPU frequency while reducing power consumption.

The SAM D20 devices have two software-selectable sleep modes, idle and standby. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped expect those selected to continue running. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode.

The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for non-intrusive on-chip debug of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory.

The SAM D20 devices are supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits.

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20G17A-AU	128K	16K	TQFP48	Tray
ATSAMD20G17A-AUT				Tape & Reel
ATSAMD20G17A-AN				Tray
ATSAMD20G17A-ANT				Tape & Reel
ATSAMD20G17A-MU			QFN48	Tray
ATSAMD20G17A-MUT				Tape & Reel
ATSAMD20G17A-MN				Tray
ATSAMD20G17A-MNT				Tape & Reel
ATSAMD20G17A-UUT			WLCSP45	Tape & Reel
ATSAMD20G18A-AU	256K	32K	TQFP48	Tray
ATSAMD20G18A-AUT				Tape & Reel
ATSAMD20G18A-AN				Tray
ATSAMD20G18A-ANT				Tape & Reel
ATSAMD20G18A-MU			QFN48	Tray
ATSAMD20G18A-MUT				Tape & Reel
ATSAMD20G18A-MN				Tray
ATSAMD20G18A-MNT				Tape & Reel
ATSAMD20G18A-UUT			WLCSP45	Tape & Reel

3.3. SAM D20J

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20J14A-AU	16K	2K	TQFP64	Tray
ATSAMD20J14A-AUT				Tape & Reel
ATSAMD20J14A-AN				Tray
ATSAMD20J14A-ANT				Tape & Reel
ATSAMD20J14A-MU			QFN64	Tray
ATSAMD20J14A-MUT				Tape & Reel
ATSAMD20J14A-MN				Tray
ATSAMD20J14A-MNT				Tape & Reel

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20J15A-AU	32K	4K	TQFP64	Tray
ATSAMD20J15A-AUT	-			Tape & Reel
ATSAMD20J15A-AN	-			Tray
ATSAMD20J15A-ANT	-			Tape & Reel
ATSAMD20J15A-MU	-		QFN64	Tray
ATSAMD20J15A-MUT				Tape & Reel
ATSAMD20J15A-MN	-			Tray
ATSAMD20J15A-MNT	-			Tape & Reel
ATSAMD20J16A-AU	64K	8K	TQFP64	Tray
ATSAMD20J16A-AUT	-			Tape & Reel
ATSAMD20J16A-AN	-			Tray
ATSAMD20J16A-ANT	-			Tape & Reel
ATSAMD20J16A-MU	-		QFN64	Tray
ATSAMD20J16A-MUT	-			Tape & Reel
ATSAMD20J16A-MN	-			Tray
ATSAMD20J16A-MNT	-			Tape & Reel
ATSAMD20J16A-CU	-		UFBGA64	Tray
ATSAMD20J16A-CUT	-			Tape & Reel
ATSAMD20J17A-AU	128K	16K	TQFP64	Tray
ATSAMD20J17A-AUT	-			Tape & Reel
ATSAMD20J17A-AN	-			Tray
ATSAMD20J17A-ANT	-			Tape & Reel
ATSAMD20J17A-MU	-		QFN64	Tray
ATSAMD20J17A-MUT				Tape & Reel
ATSAMD20J17A-MN				Tray
ATSAMD20J17A-MNT				Tape & Reel
ATSAMD20J17A-CU			UFBGA64	Tray
ATSAMD20J17A-CUT				Tape & Reel

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20J18A-AU	256K	32K	TQFP64	Tray
ATSAMD20J18A-AUT	_			Tape & Reel
ATSAMD20J18A-AN	_			Tray
ATSAMD20J18A-ANT	_			Tape & Reel
ATSAMD20J18A-MU	_		QFN64	Tray
ATSAMD20J18A-MUT	_			Tape & Reel
ATSAMD20J18A-MN	_			Tray
ATSAMD20J18A-MNT	_			Tape & Reel
ATSAMD20J18A-CU			UFBGA64	Tray
ATSAMD20J18A-CUT				Tape & Reel

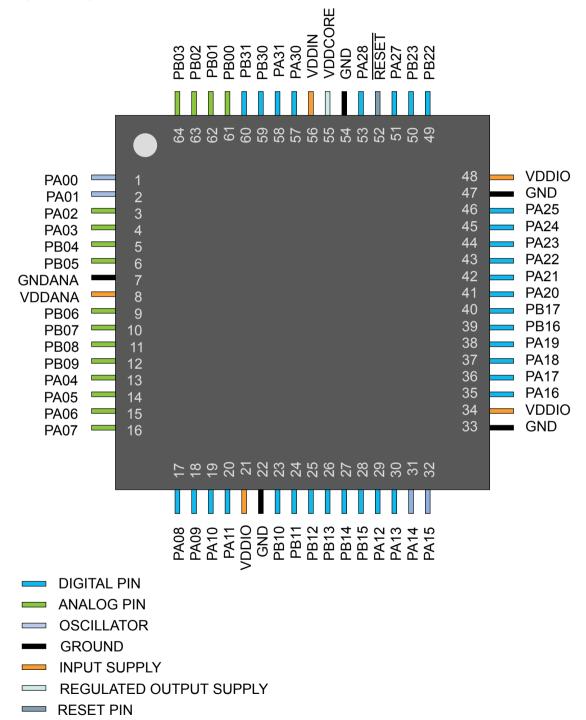
3.4. Device Identification

The DSU - Device Service Unit peripheral provides the Device Selection bits in the Device Identification register (DID.DEVSEL) in order to identify the device by software. The device variants have a reset value of DID=0x1001drxx, with the LSB identifying the die number ('d'), the die revision ('r') and the device selection ('xx').

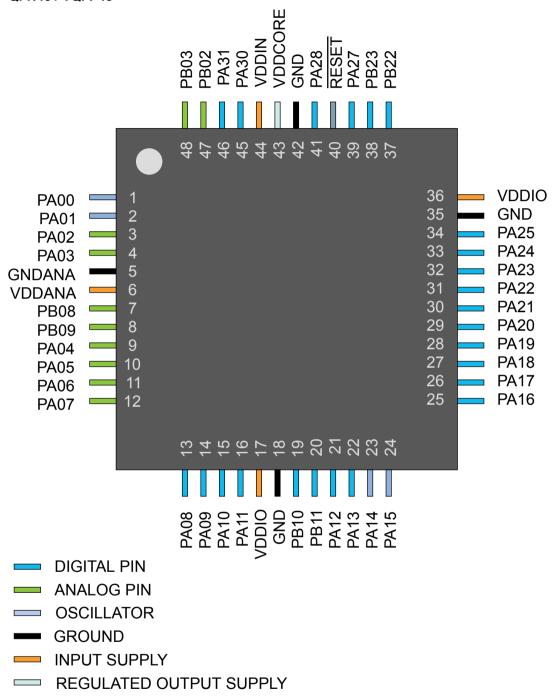
	Table 3-1.	Device	Identification	Values
--	------------	--------	----------------	--------

Device Variant	DID.DEVSEL	Device ID (DID)
SAMD20J18C	0x00	0x10001300
SAMD20J18A	0x00	0x10001300
SAMD20J17A	0x01	0x10001301
SAMD20J16A	0x02	0x10001302
SAMD20J15A	0x03	0x10001303
SAMD20J14A	0x04	0x10001304
SAMD20G18A	0x05	0x10001305
SAMD20G17A	0x06	0x10001306
SAMD20G16A	0x07	0x10001307
SAMD20G15A	0x08	0x10001308
SAMD20G14A	0x09	0x10001309
SAMD20E18A	0x0A	0x1000130A
SAMD20E17A	0x0B	0x1000130B
SAMD20E16A	0x0C	0x1000130C
SAMD20E15A	0x0D	0x1000130D

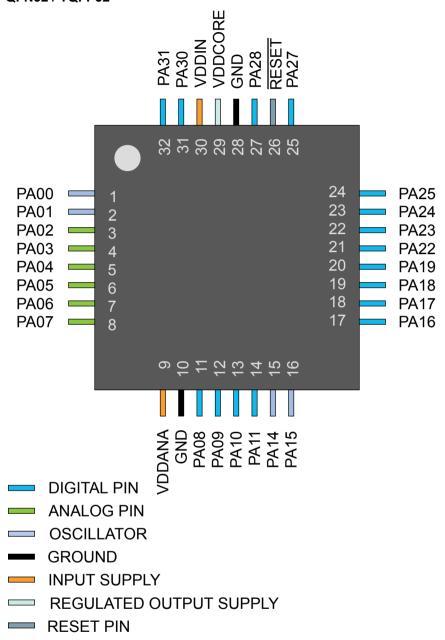
Device Variant	DID.DEVSEL	Device ID (DID)
SAMD20E14A	0x0E	0x1000130E
Reserved	0x0F	
SAMD20G18U	0x10	0x10001310
SAMD20G17U	0x11	0x10001311
Reserved	0x12 - 0xFF	


Note: The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die. The device variant denotes functional differences, whereas the die revision marks evolution of the die.

5. Pinout


5.1. SAM D20J

5.1.1. QFN64 / TQFP64


- 5.2. SAM D20G
- 5.2.1. QFN48 / TQFP48

RESET PIN

- 5.3. SAM D20E
- 5.3.1. QFN32 / TQFP32

Peripheral Source	NVIC Line
DAC – Digital-to-Analog Converter	23
PTC – Peripheral Touch Controller	24

7.3. Micro Trace Buffer

7.3.1. Features

- Program flow tracing for the Cortex-M0+ processor
- MTB SRAM can be used for both trace and general purpose storage by the processor
- The position and size of the trace buffer in SRAM is configurable by software
- CoreSight compliant

7.3.2. Overview

When enabled, the MTB records changes in program flow, reported by the Cortex-M0+ processor over the execution trace interface shared between the Cortex-M0+ processor and the CoreSight MTB-M0+. This information is stored as trace packets in the SRAM by the MTB. An off-chip debugger can extract the trace information using the Debug Access Port to read the trace information from the SRAM. The debugger can then reconstruct the program flow from this information.

The MTB simultaneously stores trace information into the SRAM, and gives the processor access to the SRAM. The MTB ensures that trace write accesses have priority over processor accesses.

The execution trace packet consists of a pair of 32-bit words that the MTB generates when it detects the processor PC value changes non-sequentially. A non-sequential PC change can occur during branch instructions or during exception entry. See the CoreSight MTB-M0+ Technical Reference Manual for more details on the MTB execution trace packet format.

Tracing is enabled when the MASTER.EN bit in the Master Trace Control Register is 1. There are various ways to set the bit to 1 to start tracing, or to 0 to stop tracing. See the CoreSight Cortex-M0+ Technical Reference Manual for more details on the Trace start and stop and for a detailed description of the MTB's MASTER register. The MTB can be programmed to stop tracing automatically when the memory fills to a specified watermark level or to start or stop tracing by writing directly to the MASTER.EN bit. If the watermark mechanism is not being used and the trace buffer overflows, then the buffer wraps around overwriting previous trace packets.

The base address of the MTB registers is 0x41006000; this address is also written in the CoreSight ROM Table. The offset of each register from the base address is fixed and as defined by the CoreSight MTB-M0+ Technical Reference Manual. The MTB has 4 programmable registers to control the behavior of the trace features:

- · POSITION: Contains the trace write pointer and the wrap bit,
- MASTER: Contains the main trace enable bit and other trace control fields,
- FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits,
- BASE: Indicates where the SRAM is located in the processor memory map. This register is provided to enable auto discovery of the MTB SRAM location, by a debug agent.

See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers.

Write-protect registers allow the user to disable a selected peripheral's write-protection without doing a read-modify-write operation. These registers are mapped into two I/O memory locations, one for clearing and one for setting the register bits. Writing a one to a bit in the Write Protect Clear register (WPCLR) will clear the corresponding bit in both registers (WPCLR and WPSET) and disable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding peripheral. Both registers (WPCLR and WPSET) will return the same value when read.

If a peripheral is write-protected, and if a write access is performed, data will not be written, and the peripheral will return an access error (CPU exception).

The PAC also offers a safety feature for correct program execution, with a CPU exception generated on double write-protection or double unprotection of a peripheral. If a peripheral n is write-protected and a write to one in WPSET[n] is detected, the PAC returns an error. This can be used to ensure that the application follows the intended program flow by always following a write-protect with an unprotect, and vice versa. However, in applications where a write-protected peripheral is used in several contexts, e.g., interrupts, care should be taken so that either the interrupt can not happen while the main application or other interrupt levels manipulate the write-protection status, or when the interrupt handler needs to unprotect the peripheral, based on the current protection status, by reading WPSET.

7.7. Register Description

Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32bit register, and the 8-bit halves of a 16-bit register can be accessed directly. Refer to the Product Mapping for PAC locations.

Related Links

Product Mapping on page 19

7.7.1. PAC0 Register Description

Name: WPCLR Offset: 0x00 **Reset:** 0x000002 Property: -Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset 15 9 8 Bit 14 13 12 11 10 Access Reset Bit 6 5 3 2 0 7 4 1 МТВ PORT NVMCTRL DSU Access R/W R/W R/W R/W 0 0 0 1 Reset

Bit 6 – MTB

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 3 – PORT

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 2 – NVMCTRL

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Name: WPSET Offset: 0x04 **Reset:** 0x000002 Property: -Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset 15 9 8 Bit 14 13 12 11 10 Access Reset Bit 6 5 3 2 0 7 4 1 МТВ PORT NVMCTRL DSU Access R/W R/W R/W R/W 0 0 0 1 Reset

Bit 6 – MTB

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 3 – PORT

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 2 – NVMCTRL

Writing a zero to these bits has no effect.

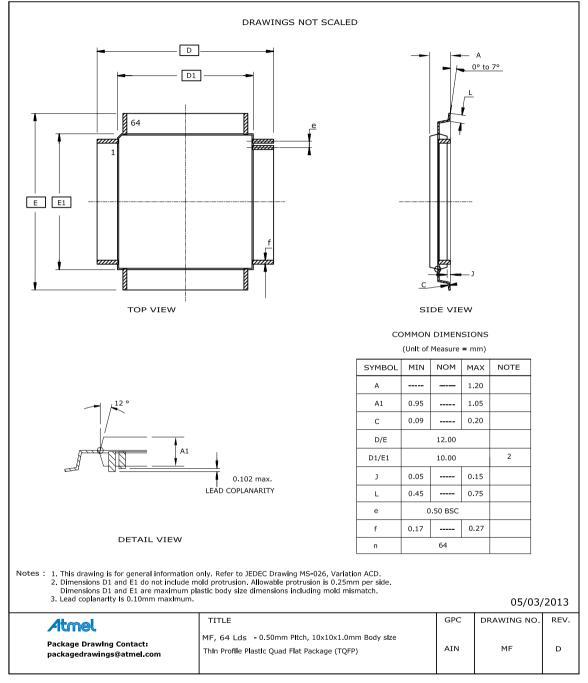
Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

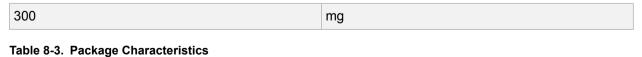
Bit 1 – DSU

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.


Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

7.7.3. PAC2 Register Description



8.2. Package Drawings

8.2.1. 64 pin TQFP

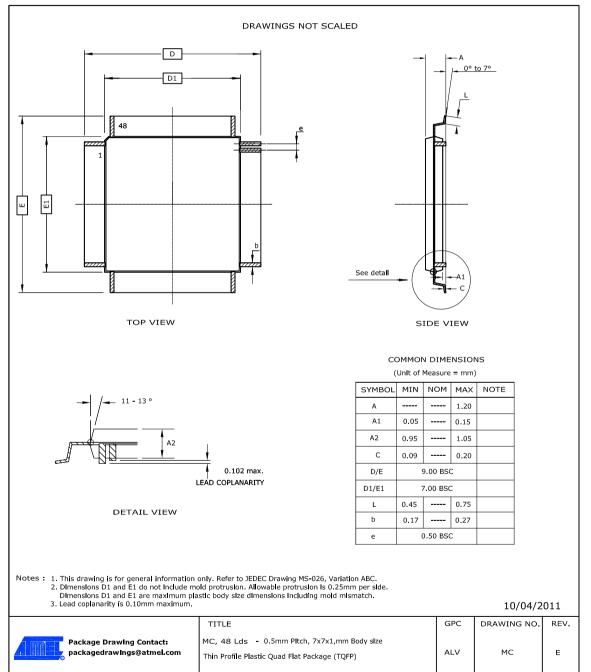

Moisture Sensitivity Level	MSL3	
----------------------------	------	--

Table 8-9.	Package Characteristics
------------	-------------------------

Moisture Sensitivity Level	MSL3
Table 8-10. Package Reference	
JEDEC Drawing Reference	MO-220
JESD97 Classification	E8

8.2.4. 48 pin TQFP

Table 8-11. Device and Package Maximum Weight

140	mg

Table 8-12. Package Characteristics

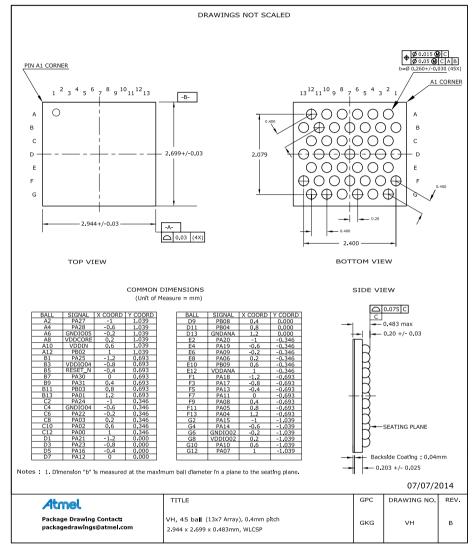

Moisture Sensitivity Level	MSL3	
Table 8-13. Package Reference		
JEDEC Drawing Reference	MS-026	
JESD97 Classification	E3	

Table 8-16. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

8.2.6. 45-ball WLCSP

wise and Deckers Meximum Weight ----

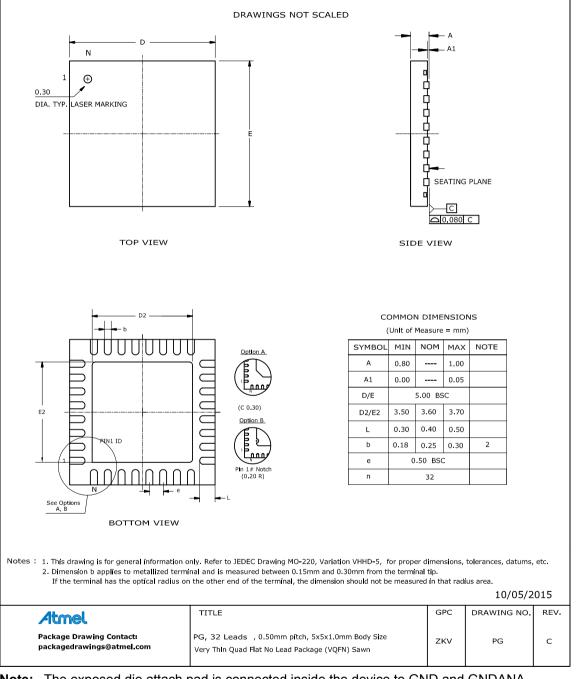

7.3	mg			
Table 8-18. Package Characteristics				
Moisture Sensitivity Level MSL1				
Table 8-19. Package Reference				
JEDEC Drawing Reference		МС	MO-220	
JESD97 Classification		E1		

Table 8-22. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

8.2.8. 32 pin QFN

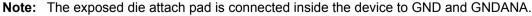


Table 8-23. Device and Package Maximum Weight

90	mg
----	----

Table 8-24. Package Characteristics

Moisture Sensitivity Level	MSL3	
Table 8-25. Package Reference		
JEDEC Drawing Reference	MO-220	
JESD97 Classification	E3	

8.2.9. 35 ball WLCSP

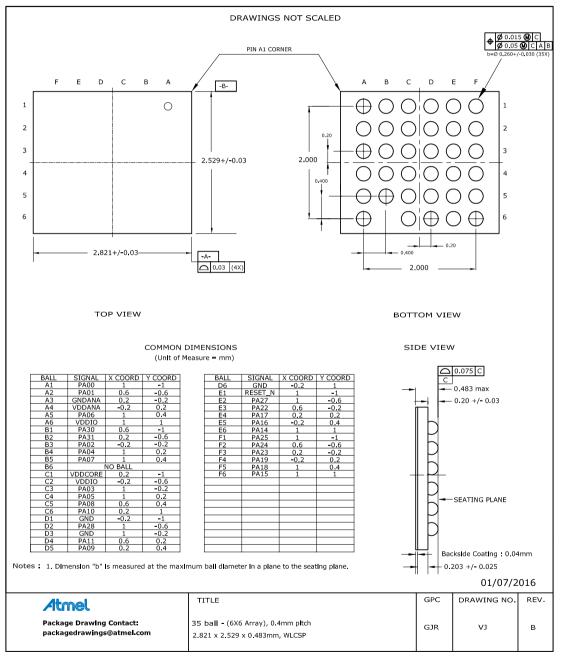


Table 8-26. Device and Package Maximum Weight

6.2

mg

Table 8-27. Package Characteristics

Moisture Sensitivity Level	MSL1	
Table 8-28. Package Reference		
JEDEC Drawing Reference	MO-220	
JESD97 Classification	E1	

8.3. Soldering Profile

The following table gives the recommended soldering profile from J-STD-20.

Table 8-29.

Profile Feature	Green Package
Average Ramp-up Rate (217°C to peak)	3°C/s max.
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150s
Time within 5°C of Actual Peak Temperature	30s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max.
Time 25°C to Peak Temperature	8 minutes max.

A maximum of three reflow passes is allowed per component.

