Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|----------------------------------------------------------------------------| | | Antivo | | Product Status | Active | | Core Processor | ARM® Cortex®-M0+ | | Core Size | 32-Bit Single-Core | | Speed | 48MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, WDT | | Number of I/O | 52 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 32K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.6V | | Data Converters | A/D 20x12b; D/A 1x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/atsamd20j18a-aut | - Up to five 16-bit Timer/Counters (TC), configurable as either: - One 16-bit TC with two compare/capture channels - One 8-bit TC with two compare/capture channels - One 32-bit TC with two compare/capture channels, by using two TCs - 32-bit Real Time Counter (RTC) with clock/calendar function - Watchdog Timer (WDT) - CRC-32 generator - Up to six Serial Communication Interfaces (SERCOM), each configurable to operate as either: - USART with full-duplex and single-wire half-duplex configuration - Inter-Integrated Circuit (I²C) up to 400kHz - · Serial Peripheral Interface (SPI) - One 12-bit, 350ksps Analog-to-Digital Converter (ADC) with up to 20 channels - · Differential and single-ended input - 1/2x to 16x programmable gain stage - Automatic offset and gain error compensation - Oversampling and decimation in hardware to support 13-, 14-, 15- or 16-bit resolution - 10-bit, 350ksps Digital-to-Analog Converter (DAC) - Two Analog Comparators (AC) with window compare function - Peripheral Touch Controller (PTC) - 256-Channel capacitive touch and proximity sensing - I/O - Up to 52 programmable I/O pins - Packages - 64-pin TQFP, QFN - 64-ball UFBGA - 48-pin TQFP, QFN - 45-ball WLCSP - 32-pin TQFP, QFN - Operating Voltage - 1.62V 3.63V - Power Consumption - Down to 70µA/MHz in active mode - Down to 8µA running the Peripheral Touch Controller # **Table of Contents** | Int | roduc | ction | 1 | |-----|-------|------------------------------------|----| | Fe | ature | S | 1 | | 1. | Des | cription | 4 | | 2. | Con | figuration Summary | 5 | | 3. | Orde | ering Information | 6 | | | 3.1. | SAM D20E | 6 | | | 3.2. | SAM D20G | | | | 3.3. | SAM D20J | | | | 3.4. | Device Identification | 11 | | 4. | Bloc | k Diagram | 13 | | 5. | Pinc | out | 14 | | | 5.1. | SAM D20J | 14 | | | 5.2. | SAM D20G | | | | 5.3. | SAM D20E | 18 | | 6. | Prod | duct Mapping | 19 | | 7. | Prod | cessor And Architecture | 20 | | | 7.1. | Cortex M0+ Processor | 20 | | | 7.2. | Nested Vector Interrupt Controller | 21 | | | 7.3. | Micro Trace Buffer | 23 | | | 7.4. | High-Speed Bus System | 24 | | | 7.5. | AHB-APB Bridge | 24 | | | 7.6. | PAC - Peripheral Access Controller | | | | 7.7. | Register Description | 26 | | 8. | Pac | kaging Information | 39 | | | 8.1. | Thermal Considerations | 39 | | | 8.2. | Package Drawings | 40 | | | 8.3. | Soldering Profile | 50 | ### 1. Description The Atmel® | SMART™ SAM D20 is a series of low-power microcontrollers using the 32-bit ARM® Cortex®-M0+ processor, and ranging from 32- to 64-pins with up to 256KB Flash and 32KB of SRAM. The SAM D20 devices operate at a maximum frequency of 48MHz and reach 2.46 CoreMark/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces. The SAM D20 devices provide the following features: In-system programmable Flash, eight-channel Event System, programmable interrupt controller, up to 52 programmable I/O pins, 32-bit real-time clock and calendar, up to eight 16-bit Timer/Counters (TC) . The timer/counters can be configured to perform frequency and waveform generation, accurate program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC. The series provide up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI, I²C up to 400kHz, up to twenty-channel 350ksps 12-bit ADC with programmable gain and optional oversampling and decimation supporting up to 16-bit resolution, one 10-bit 350ksps DAC, two analog comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and two-pin Serial Wire Debug (SWD) program and debug interface. All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus maintaining a high CPU frequency while reducing power consumption. The SAM D20 devices have two software-selectable sleep modes, idle and standby. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped expect those selected to continue running. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode. The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for non-intrusive on-chip debug of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory. The SAM D20 devices are supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits. # 2. Configuration Summary | | SAM D20J | SAM D20G | SAM D20E | | |---------------------------------------------------|-----------------------------------------------|--------------------------|---------------------|--| | Pins | 64 | 48 | 32 | | | General Purpose I/O-pins (GPIOs) | 52 | 38 | 26 | | | Flash | 256/128/64/32KB | 256/128/64/32KB | 256/128/64/32KB | | | SRAM | 32/16/8/4/2KB | 32/16/8/4/2KB | 32/16/8/4/2KB | | | Timer Counter (TC) instances | 8 | 6 | 6 | | | Waveform output channels per TC instance | 2 | 2 | 2 | | | Serial Communication Interface (SERCOM) instances | 6 | 6 | 4 | | | Analog-to-Digital Converter (ADC) channels | 20 | 14 | 10 | | | Analog Comparators (AC) | 2 | 2 | 2 | | | Digital-to-Analog Converter (DAC) channels | 1 | 1 | 1 | | | Real-Time Counter (RTC) | Yes | Yes | Yes | | | RTC alarms | 1 | 1 | 1 | | | RTC compare values | One 32-bit value or | One 32-bit value or | One 32-bit value or | | | | two 16-bit values | two 16-bit values | two 16-bit values | | | External Interrupt lines | 16 | 16 | 16 | | | Peripheral Touch Controller (PTC) X and Y lines | 16x16 | 12x10 | 10x6 | | | Maximum CPU frequency | 48MHz | | | | | Packages | QFN | QFN | QFN | | | | TQFP | TQFP | TQFP | | | | UFBGA | WLCSP | | | | Oscillators | 32.768kHz crystal o | scillator (XOSC32K) | | | | | 0.4-32MHz crystal c | scillator (XOSC) | | | | | 32.768kHz internal | oscillator (OSC32K) | | | | | 32KHz ultra-low-pov | wer internal oscillator | (OSCULP32K) | | | | 8MHz high-accuracy | y internal oscillator (C | DSC8M) | | | | 48MHz Digital Frequency Locked Loop (DFLL48M) | | | | | Event System channels | 8 | 8 | 8 | | | SW Debug Interface | Yes | Yes | Yes | | | Watchdog Timer (WDT) | Yes | Yes | Yes | | ## 3. Ordering Information #### 3.1. SAM D20E | Ordering Code | FLASH (bytes) | SRAM (bytes) | Package | Carrier Type | |------------------|---------------|--------------|---------|--------------| | ATSAMD20E14A-AU | 16K | 2K | TQFP32 | Tray | | ATSAMD20E14A-AUT | | | | Tape & Reel | | ATSAMD20E14A-AN | | | | Tray | | ATSAMD20E14A-ANT | | | | Tape & Reel | | ATSAMD20E14A-MU | | | QFN32 | Tray | | ATSAMD20E14A-MUT | | | | Tape & Reel | | ATSAMD20E14A-MN | | | | Tray | | ATSAMD20E14A-MNT | | | | Tape & Reel | | Ordering Code | FLASH (bytes) | SRAM (bytes) | Package | Carrier Type | |------------------|---------------|--------------|---------|--------------| | ATSAMD20J15A-AU | 32K | 4K | TQFP64 | Tray | | ATSAMD20J15A-AUT | | | | Tape & Reel | | ATSAMD20J15A-AN | | | | Tray | | ATSAMD20J15A-ANT | | | | Tape & Reel | | ATSAMD20J15A-MU | | | QFN64 | Tray | | ATSAMD20J15A-MUT | | | | Tape & Reel | | ATSAMD20J15A-MN | | | | Tray | | ATSAMD20J15A-MNT | | | | Tape & Reel | | ATSAMD20J16A-AU | 64K | 8K | TQFP64 | Tray | | ATSAMD20J16A-AUT | | | | Tape & Reel | | ATSAMD20J16A-AN | | | | Tray | | ATSAMD20J16A-ANT | | | | Tape & Reel | | ATSAMD20J16A-MU | | | QFN64 | Tray | | ATSAMD20J16A-MUT | | | | Tape & Reel | | ATSAMD20J16A-MN | | | | Tray | | ATSAMD20J16A-MNT | | | | Tape & Reel | | ATSAMD20J16A-CU | | | UFBGA64 | Tray | | ATSAMD20J16A-CUT | | | | Tape & Reel | | ATSAMD20J17A-AU | 128K | 16K | TQFP64 | Tray | | ATSAMD20J17A-AUT | | | | Tape & Reel | | ATSAMD20J17A-AN | | | | Tray | | ATSAMD20J17A-ANT | | | | Tape & Reel | | ATSAMD20J17A-MU | | | QFN64 | Tray | | ATSAMD20J17A-MUT | | | | Tape & Reel | | ATSAMD20J17A-MN | | | | Tray | | ATSAMD20J17A-MNT | | | | Tape & Reel | | ATSAMD20J17A-CU | | | UFBGA64 | Tray | | ATSAMD20J17A-CUT | | | | Tape & Reel | | Device Variant | DID.DEVSEL | Device ID (DID) | |----------------|-------------|-----------------| | SAMD20E14A | 0x0E | 0x1000130E | | Reserved | 0x0F | | | SAMD20G18U | 0x10 | 0x10001310 | | SAMD20G17U | 0x11 | 0x10001311 | | Reserved | 0x12 - 0xFF | | **Note:** The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die. The device variant denotes functional differences, whereas the die revision marks evolution of the die. ### 4. Block Diagram **Note:** 1. Some products have different number of SERCOM instances, Timer/Counter instances, PTC signals and ADC signals. Refer to *Peripherals Configuration Summary* for details. | Peripheral Source | NVIC Line | |-----------------------------------|-----------| | DAC – Digital-to-Analog Converter | 23 | | PTC – Peripheral Touch Controller | 24 | #### 7.3. Micro Trace Buffer #### 7.3.1. Features - Program flow tracing for the Cortex-M0+ processor - MTB SRAM can be used for both trace and general purpose storage by the processor - The position and size of the trace buffer in SRAM is configurable by software - CoreSight compliant #### 7.3.2. Overview When enabled, the MTB records changes in program flow, reported by the Cortex-M0+ processor over the execution trace interface shared between the Cortex-M0+ processor and the CoreSight MTB-M0+. This information is stored as trace packets in the SRAM by the MTB. An off-chip debugger can extract the trace information using the Debug Access Port to read the trace information from the SRAM. The debugger can then reconstruct the program flow from this information. The MTB simultaneously stores trace information into the SRAM, and gives the processor access to the SRAM. The MTB ensures that trace write accesses have priority over processor accesses. The execution trace packet consists of a pair of 32-bit words that the MTB generates when it detects the processor PC value changes non-sequentially. A non-sequential PC change can occur during branch instructions or during exception entry. See the CoreSight MTB-M0+ Technical Reference Manual for more details on the MTB execution trace packet format. Tracing is enabled when the MASTER.EN bit in the Master Trace Control Register is 1. There are various ways to set the bit to 1 to start tracing, or to 0 to stop tracing. See the CoreSight Cortex-M0+ Technical Reference Manual for more details on the Trace start and stop and for a detailed description of the MTB's MASTER register. The MTB can be programmed to stop tracing automatically when the memory fills to a specified watermark level or to start or stop tracing by writing directly to the MASTER.EN bit. If the watermark mechanism is not being used and the trace buffer overflows, then the buffer wraps around overwriting previous trace packets. The base address of the MTB registers is 0x41006000; this address is also written in the CoreSight ROM Table. The offset of each register from the base address is fixed and as defined by the CoreSight MTB-M0+ Technical Reference Manual. The MTB has 4 programmable registers to control the behavior of the trace features: - POSITION: Contains the trace write pointer and the wrap bit, - MASTER: Contains the main trace enable bit and other trace control fields, - FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits, - BASE: Indicates where the SRAM is located in the processor memory map. This register is provided to enable auto discovery of the MTB SRAM location, by a debug agent. See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 1 - DSU Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | ### 7.7.3. PAC2 Register Description #### 7.7.3.1. Write Protect Clear Name: WPCLR Offset: 0x00 **Reset:** 0x00800000 Property: - | Bit | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | |--------|---------|---------|---------|---------|---------|---------|-------|-----| | | | | | | | | | | | Access | | | | | | | | | | Reset | | | | | | | | | | | | | | | | | | | | Bit | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | | | | | | PTC | DAC | AC | ADC | | Access | | | | | R/W | R/W | R/W | R/W | | Reset | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | TC7 | TC6 | TC5 | TC4 | TC3 | TC2 | TC1 | TC0 | | Access | R/W | Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | SERCOM5 | SERCOM4 | SERCOM3 | SERCOM2 | SERCOM1 | SERCOM0 | EVSYS | | | Access | R/W · | | Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | #### Bit 19 - PTC Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 18 - DAC Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 17 - AC Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 16 - ADC Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bits 15,14,13,12,11,10,9,8 - TCx Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bits 7,6,5,4,3,2 - SERCOMx Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 1 - EVSYS Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | 1 | V alue | Description | |---|---------------|-------------------------------| | (|) | Write-protection is disabled. | | • | 1 | Write-protection is enabled. | | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 16 - ADC Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bits 15,14,13,12,11,10,9,8 - TCx Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bits 7,6,5,4,3,2 - SERCOMx Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | Value | Description | |-------|-------------------------------| | 0 | Write-protection is disabled. | | 1 | Write-protection is enabled. | #### Bit 1 - EVSYS Writing a zero to these bits has no effect. Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals. | 1 | V alue | Description | |---|---------------|-------------------------------| | (|) | Write-protection is disabled. | | • | 1 | Write-protection is enabled. | ### 8.2. Package Drawings #### 8.2.1. 64 pin TQFP Table 8-2. Device and Package Maximum Weight | 300 | mg | |-----|----| |-----|----| **Table 8-3. Package Characteristics** | Moisture Sensitivity Level | MSL3 | |----------------------------|------| #### Table 8-5. Device and Package Maximum Weight | 200 | mg | |-----|----| | | _ | #### Table 8-6. Package Charateristics | Moisture Sensitivity Level | MSL3 | |----------------------------|------| | • | | #### Table 8-7. Package Reference | JEDEC Drawing Reference | MO-220 | |-------------------------|--------| | JESD97 Classification | E3 | #### 8.2.3. 64-ball UFBGA TOP VIEW #### COMMON DIMENSIONS (Unit of Measure = mm) | SYMBOL | MIN | МОИ | MAX | NOTE | |-----------|-----------------------------|----------|-------|------| | Α | | | 0.650 | | | A1 | 0.140 | | 0.240 | | | E/D | | 5.00 / 5 | 5.00 | | | E1/D1 | | 3.50 / 3 | .50 | | | b | 0.200 | | 0.300 | | | е | Ball pitch : 0.500 | | | | | М | Mold thickness : 0.250 ref | | | | | S | Subst thickness : 0.136 ref | | | | | aaa | Pack edge tolerance : 0.100 | | | | | bbb | Mold flatness : 0.100 | | | | | ddd | Copla: 0.100 | | | | | ball diam | 0.250 | | | | | n | 64 | | | | Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-280, Variation UCCBB for proper dimensions, tolerances, datums, etc. - 2. Array as seen from the bottom of the package. - 3. Dimension A includes stand-off height A1, package body thickness, and lid height, but does not include attached features. 4. Dimension b is measured at the maximum ball diameter, parallel to primary datum C. Table 8-8. Device and Package Maximum Weight | 27.4 | mg | | |------|----|--| | | | | ### Table 8-11. Device and Package Maximum Weight | 140 | mg | |------|----| | 1.10 | 9 | #### Table 8-12. Package Characteristics | Moisture Sensitivity Level | MSL3 | |----------------------------|------| | , | | ### Table 8-13. Package Reference | JEDEC Drawing Reference | MS-026 | |-------------------------|--------| | JESD97 Classification | E3 | #### 8.2.7. 32 pin TQFP Table 8-20. Device and Package Maximum Weight | 100 | mg | |-----|----| | | | #### Table 8-21. Package Charateristics | Moisture Sensitivity Level | MSL3 | |----------------------------|------| | | | #### Table 8-22. Package Reference | JEDEC Drawing Reference | MS-026 | |-------------------------|--------| | JESD97 Classification | E3 | #### 8.2.8. 32 pin QFN Note: The exposed die attach pad is connected inside the device to GND and GNDANA. Table 8-23. Device and Package Maximum Weight | 00 | ma | |----|----| | 90 | mg | #### **Table 8-27. Package Characteristics** | Moisture Sensitivity Level | MSL1 | |----------------------------|------| | , | | #### Table 8-28. Package Reference | JEDEC Drawing Reference | MO-220 | |-------------------------|--------| | JESD97 Classification | E1 | ### 8.3. Soldering Profile The following table gives the recommended soldering profile from J-STD-20. Table 8-29. | Profile Feature | Green Package | |--------------------------------------------|----------------| | Average Ramp-up Rate (217°C to peak) | 3°C/s max. | | Preheat Temperature 175°C ±25°C | 150-200°C | | Time Maintained Above 217°C | 60-150s | | Time within 5°C of Actual Peak Temperature | 30s | | Peak Temperature Range | 260°C | | Ramp-down Rate | 6°C/s max. | | Time 25°C to Peak Temperature | 8 minutes max. | A maximum of three reflow passes is allowed per component. **Atmel Corporation** 1600 Technology Drive, San Jose, CA 95110 USA **T**: (+1)(408) 441.0311 F: (+1)(408) 436.4200 www.atmel.com © 2016 Atmel Corporation. / Rev.: Atmel-42129P-SAM D20 Datasheet Summary-09/2016 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.