E·X Renesas Electronics America Inc - UPD78F1162AGF-GAS-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1162agf-gas-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User's Manual

78K0R/KG3

16-bit Single-Chip Microcontrollers

μPD78F1162, 78F1162A, 78F1162A(A) μPD78F1163, 78F1163A, 78F1163A(A) μPD78F1164, 78F1164A, 78F1164A(A) μPD78F1165, 78F1165A, 78F1165A(A) μPD78F1166, 78F1166A, 78F1166A(A) μPD78F1167, 78F1167A, 78F1167A(A) μPD78F1168, 78F1168A, 78F1168A(A)

Document No. U17894EJ9V0UD00 (9th edition) Date Published July 2009 NS

© NEC Electronics Corporation 2006 Printed in Japan

4.5	Settings of Port Mode Register and Output Latch When Using Alternate	100
4.6	Function Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)	
CHAPT	ER 5 EXTERNAL BUS INTERFACE	164
5.1	Functions of External Bus Interface	
5.2	Registers Controlling External Bus Interface Functions	170
5.3	Setting Port Mode Register and Output Latch	173
5.4	Number of Instruction Wait Clocks for Data Access	174
5.5	Number of Instruction Execution Clocks and Instruction Wait Clocks for Fe	etch
	Access	174
5.6	Number of Instruction Wait Clocks for External Wait Pin	175
5.7	Timing of External Bus Interface Function	176
	5.7.1 Multiplexed bus mode	177
	5.7.2 Separate bus mode	
5.8	Example of Connection to Memory	
	5.8.1 Connection of external logic (ASIC, etc.)	
	5.8.2 Connection of synchronous memory	
	5.8.3 Connection of asynchronous memory	
CHAPT	ER 6 CLOCK GENERATOR	
6.1	Functions of Clock Generator	
6.2	Configuration of Clock Generator	
6.3	Registers Controlling Clock Generator	190
6.4	System Clock Oscillator	204
	6.4.1 X1 oscillator	204
	6.4.2 XT1 oscillator	204
	6.4.3 Internal high-speed oscillator	207
	6.4.4 Internal low-speed oscillator	207
	6.4.5 Prescaler	207
6.5	Clock Generator Operation	208
6.6	Controlling Clock	212
	6.6.1 Example of controlling high-speed system clock	212
	6.6.2 Example of controlling internal high-speed oscillation clock	215
	6.6.3 Example of controlling subsystem clock	217
	6.6.4 Example of controlling internal low-speed oscillation clock	219
	6.6.5 CPU clock status transition diagram	
	6.6.6 Condition before changing CPU clock and processing after changing CPU clock	225
	6.6.7 Time required for switchover of CPU clock and main system clock	
	6.6.8 Conditions before clock oscillation is stopped	228
CHAPT	ER 7 TIMER ARRAY UNIT	229
7.1	Functions of Timer Array Unit	229
	7.1.1 Functions of each channel when it operates independently	229
	7.1.2 Functions of each channel when it operates with another channel	230
	7.1.3 LIN-bus supporting function (channel 7 only)	230

Address: FF	FA3H Afte	r reset: 07H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0
				-				
	OSTS2	OSTS1	OSTS0		Oscillation	stabilization tin	ne selection	
						fx = 10 MHz	fx =	20 MHz
	0	0	0	2 ⁸ /fx	2	5.6 <i>μ</i> s	Setting	orohibited
	0	0	1	2 ⁹ /fx	5	1.2 <i>μ</i> s	25.6 <i>μ</i> s	
	0	1	0	2 ¹⁰ /fx	1(02.4 <i>µ</i> s	51.2 <i>μ</i> s	
	0	1	1	2 ¹¹ /fx	20	04.8 <i>μ</i> s	102.4 µs	3
	1	0	0	2 ¹³ /fx	8	19.2 <i>μ</i> s	409.6 µs	3
	1	0	1	2 ¹⁵ /fx	3.	27 ms	1.64 ms	
	1	1	0	2 ¹⁷ /fx	1;	3.11 ms	6.55 ms	
	1	1	1	2 ¹⁸ /fx	2	6.21 ms	13.11 m	S

Figure 6-5. Format of Oscillation Stabilization Time Select Register (OSTS)

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.

- 2. Setting the oscillation stabilization time to 20 μ s or less is prohibited.
- 3. To change the setting of the OSTS register, be sure to confirm that the counting operation of the OSTC register has been completed.
- 4. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
- 5. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.

In the following cases, set the oscillation stabilization time of OSTS to the value greater than or equal to the count value which is to be checked by the OSTC register.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)
- 6. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

Figure 13-1 shows the block diagram of serial array unit 0.

Starting setting for resumption Disable data output and clock output of the target channel by setting a port Port manipulation (Essential) register and a port mode register. Change the setting if an incorrect division Changing setting of SPSm register (Selective) ratio of the operation clock is set. Change the setting if an incorrect Changing setting of SDRmn register (Selective) transfer baud rate is set. Change the setting if the setting of the Changing setting of SMRmn register (Selective) SMRmn register is incorrect. Change the setting if the setting of the Changing setting of SCRmn register (Selective) SCRmn register is incorrect. Cleared by using SIRmn register if FEF, Clearing error flag (Selective) PEF, or OVF flag remains set. Set the SOEm register and stop the Changing setting of SOEm register (Selective) output of the target channel. Manipulate the SOmn and CKOmn bits Changing setting of SOm register (Selective) and set an initial output level. Set the SOEm register and enable data Changing setting of SOEm register (Selective) output of the target channel. Enable data output and clock output of the target channel by setting a port Port manipulation (Essential) register and a port mode register. Set the SSmn bit of the target channel to Writing to SSm register (Essential) 1 to set SEmn = 1. Set transmit data to the SIOp register (bits 7 (Essential) Starting communication to 0 of the SDRmn register) and start communication.

Figure 13-27. Procedure for Resuming Master Transmission

(2) Operation procedure

Figure 13-33. Initial Setting Procedure for Master Reception

Caution After setting the PER0 register to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 13-35 Procedure for Resuming Master Reception).

(1) Register setting

<R>

Figure 13-56. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20)

(a) Serial output register m (SOm) ... The register that not used in this mode. SOm CKOm2 CKOm1 CKOm0 SOm2 SOm1 SOm0 × х Х (b) Serial output enable register m (SOEm) ... The register that not used in this mode. SOEm SOEm2 SOEm1 SOEm0 х Х Х (c) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1. SSm SSm3 SSm2 SSm1 SSm0 0/1 0/1 0/1 х (d) Serial mode register mn (SMRmn) SMRmn CKSm STSm MDmn2 MDmn1 MDmn0 CCSm SISmn 0/1 Interrupt sources of channel n 0: Transfer end interrupt (e) Serial communication operation setting register mn (SCRmn) SCRmn TXEm RXEmr DAPmr CKPmn OCmr PTCmn1 PTCmn0 DIRmn SLCmn1 SLCmn0 DLSmn2 DLSmn1 DLSmn(0/1 0/1 0/1 0/1 (f) Serial data register mn (SDRmn) (lower 8 bits: SIOp) SDRmn Receive data register (baud rate setting) SIOp

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), p: CSI number (p = 00, 01, 10, 20)
□: Setting is fixed in the CSI slave reception mode, □: Setting disabled (set to the initial value)
×: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
0/1: Set to 0 or 1 depending on the usage of the user

13.7 Operation of Simplified I ²C (IIC10, IIC20) Communication

This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA). This communication function is designed to execute single communication with devices such as EEPROM, flash memory, and A/D converter, and therefore, can be used only by the master and does not have a wait detection function. Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed.

[Data transmission/reception]

- Master transmission, master reception (only master function with a single master)
- ACK output function^{Note} and ACK detection function
- Data length of 8 bits
 - (When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.)
- Manual generation of start condition and stop condition

[Interrupt function]

• Transfer end interrupt

[Error detection flag]

- Overrun error
- Parity error (ACK error)

* [Functions not supported by simplified I²C]

- Slave transmission, slave reception
- Arbitration loss detection function
- Wait detection function
- Note An ACK is not output when the last data is being received by writing 0 to the SOEmn (SOEm register) bit and stopping the output of serial communication data. See 13.7.3 (2) Processing flow for details.

Remarks 1. To use the full-function I²C bus, see CHAPTER 14 SERIAL INTERFACE IIC0.

2. m: Unit number (m = 0, 1), n: Channel number (n = 0, 2)

The channels supporting simplified I²C (IIC10, IIC20) are channel 2 of SAU0 and channel 0 of SAU1.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ² C
0	0	CS100	UART0	-
	1	CSI01		_
	2	CSI10	UART1	IIC10
	3	_		_
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	_		_

Simplified I²C (IIC10, IIC20) performs the following four types of communication operations.

- Address field transmission (See 13.7.1.)
- Data transmission (See 13.7.2.)
- Data reception (See 13.7.3.)
- Stop condition generation (See 13.7.4.)

STT0 ^{Note}	Start condition trigger						
0	Do not generate a start condition.						
 1 When bus is released (in standby state, when IICBSY = 0): Generate a start condition (for starting as master). When the SCL0 line is high level, the SDA0 line is changed from high level to low level and then the start condition is generated. Next, after the rated amount of time has elapsed, SCL0 is changed to low level (wait state). When a third party is communicating: When communication reservation function is enabled (IICRSV = 0) Functions as the start condition reservation flag. When set to 1, automatically generates a start condition after the bus is released. When communication reservation function is disabled (IICRSV = 1) STCF is set to 1 and STT0 is cleared. No start condition is generated. In the wait state (when master device): Generates a restart condition after releasing the wait. 							
Cautions cc • For maste • For maste • Cannot be • Setting ST	r reception: Cannot be set to 1 during trans ACKE0 has been cleared to 0 a r transmission: A start condition cannot be gen during the wait period that follo e set to 1 at the same time as SPT0. TO to 1 and then setting it again before it is clear	fer. Can be set to 1 only in the waiting period when and slave has been notified of final reception. rerated normally during the acknowledge period. Set to 1 ws output of the ninth clock. ared to 0 is prohibited.					
Condition fo	or clearing (STT0 = 0)	Condition for setting (STT0 = 1)					
 Cleared b reservatio Cleared b Cleared a device Cleared b Cleared b When IICI Reset 	y setting SST0 to 1 while communication in is prohibited. y loss in arbitration fter start condition is generated by master y LREL0 = 1 (exit from communications) E0 = 0 (operation stop)	Set by instruction					

Figure 14-6. Format of IIC Control Register 0 (IICC0) (3/4)

Note The signal of this bit is invalid while IICE0 is 0.

<R>

Remarks 1. Bit 1 (STT0) becomes 0 when it is read after data setting.

2. IICRSV: Bit 0 of IIC flag register (IICF0)

STCF: Bit 7 of IIC flag register (IICF0)

16.4 Operation of DMA Controller

16.4.1 Operation procedure

- <1> The DMA controller is enabled to operate when DENn = 1. Before writing the other registers, be sure to set DENn to 1. Use 80H to write with an 8-bit manipulation instruction.
- <2> Set an SFR address, a RAM address, the number of times of transfer, and a transfer mode of DMA transfer to the DSAn, DRAn, CBCn, and DMCn registers.
- <3> The DMA controller waits for a DMA trigger when DSTn = 1. Use 81H to write with an 8-bit manipulation instruction.
- <4> When a software trigger (STGn) or a start source trigger specified by IFCn3 to IFCn0 is input, a DMA transfer is started.
- <5> Transfer is completed when the number of times of transfer set by the DBCn register reaches 0, and transfer is automatically terminated by occurrence of an interrupt (INTDMAn).
- <6> Stop the operation of the DMA controller by clearing DENn to 0 when the DMA controller is not used.

Figure 16-8. Setting Example of CSI Master Reception

Note The DSTn flag is automatically cleared to 0 when a DMA transfer is completed.

Writing the DENn flag is enabled only when DSTn = 0. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAn (INTDMAn), set DSTn to 0 and then DENn to 0 (for details, refer to **16.5.7 Forcible termination by software**).

Because no CSI interrupt is generated when reception starts during CSI master reception, dummy data is written using software in this example.

The received data is automatically transferred from the first byte. (In successive reception mode, the data that is to be received when the first buffer empty interrupt occurs is invalid because the valid data has not been received.)

A DMA interrupt (INTDMA1) occurs when the last dummy data has been writing to the data register. A DMA interrupt (INTDMA0) occurs when the last received data has been read from the data register. To restart the DMA transfer, the CSI transfer must be completed.

16.5.7 Forced termination by software

After DSTn is set to 0 by software, it takes up to 2 clocks until a DMA transfer is actually stopped and DSTn is set to 0. To forcibly terminate a DMA transfer by software without waiting for occurrence of the interrupt (INTDMAn) of DMAn, therefore, perform either of the following processes.

<When using one DMA channel>

- Set DSTn to 0 (use DRCn = 80H to write with an 8-bit manipulation instruction) by software, confirm by polling that DSTn has actually been cleared to 0, and then set DENn to 0 (use DRCn = 00H to write with an 8-bit manipulation instruction).
- Set DSTn to 0 (use DRCn = 80H to write with an 8-bit manipulation instruction) by software and then set DENn to 0 (use DRCn = 00H to write with an 8-bit manipulation instruction) two or more clocks after.
- <R> <When using both DMA channels>
 - To forcibly terminate DMA transfer by software when using both DMA channels (by setting DSTn to 0), clear the DSTn bit to 0 after the DMA transfer is held pending by setting the DWAIT0 and DWAIT1 bits of both channels to 1. Next, clear the DWAIT0 and DWAIT1 bits of both channels to 0 to cancel the pending status, and then clear the DENn bit to 0.

Remarks 1. n: DMA channel number (n = 0, 1)

2. 1 clock: 1/fclk (fclk: CPU clock)

	Hardware	Status After Reset Acknowledgment ^{Note 1}
Serial interface IIC0	Shift register 0 (IIC0)	00H
	Control register 0 (IICC0)	00H
	Slave address register 0 (SVA0)	00H
	Clock select register 0 (IICCL0)	00H
	Function expansion register 0 (IICX0)	00H
	Status register 0 (IICS0)	00H
	Flag register 0 (IICF0)	00H
Multiplier	Multiplication input data register A (MULA)	0000H
	Multiplication input data register B (MULB)	0000H
	Higher multiplication result storage register (MULOH)	0000H
	Lower multiplication result storage register (MULOL)	0000H
Key interrupt	Key return mode register (KRM)	00H
Reset function	Reset control flag register (RESF)	00H ^{Note 2}
Low-voltage detector	Low-voltage detection register (LVIM)	00H ^{Note 3}
	Low-voltage detection level select register (LVIS)	0EH ^{Note 2}
Regulator	Regulator mode control register (RMC)	00H
DMA controller	SFR address registers 0, 1 (DSA0, DSA1)	00H
	RAM address registers 0L, 0H, 1L, 1H (DRA0L, DRA0H, DRA1L, DRA1H)	00H
	Byte count registers 0L, 0H, 1L, 1H (DBC0L, DBC0H, DBC1L, DBC1H)	00H
	Mode control registers 0, 1 (DMC0, DMC1)	00H
	Operation control registers 0, 1 (DRC0, DRC1)	00H
Interrupt	Request flag registers 0L, 0H, 1L, 1H, 2L, 2H (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)	00H
	Mask flag registers 0L, 0H, 1L, 1H, 2L, 2H (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)	FFH
	Priority specification flag registers 00L, 00H, 01L, 01H, 02L, 02H, 10L, 10H, 11L, 11H, 12L, 12H (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H, PR11L, PR11H, PR02L, PR02H, PR12L, PR12H)	FFH
	External interrupt rising edge enable registers 0, 1 (EGP0, EGP1)	00H
	External interrupt falling edge enable registers 0, 1 (EGN0, EGN1)	00H
BCD correction circuit	BCD correction result register (BCDADJ)	Undefined

Table 20-2.	Hardware Statuses	After Reset	Acknowledgment	(3/3)
-------------	-------------------	-------------	----------------	------	---

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
 These values vary depending on the reset source.

Register	Reset Source	RESET Input	Reset by POC	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by LVI
RESF	TRAP bit	Cleared (0)	Cleared (0)	Set (1)	Held	Held
	WDRF bit			Held	Set (1)	Held
	LVIRF bit			Held	Held	Set (1)
LVIS		Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Held

3. This value varies depending on the reset source and the option byte.

Standard Products

Manufacturer	Part	SMD/	Frequency	Load Capacitance	Recomme	ended Circuit	Constants	Oscillation Voltage Range	
	Number	Lead	(kHz)	CL (pF)	C3 (pF)	C4 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
Seiko	SP-T2A	SMD	32.768	6.0	5	5	0	1.8	5.5
Instruments				12.5	18	18	0		
Inc.	SSP-T7	Small		7.0	7	7	0		
		SMD		12.5	18	18	0]	
	VT-200	Lead		6.0	5	5	0]	
				12.5	18	18	0		
CITIZEN	CM200S	SMD	32.768	9.0	12	15	0	1.8	5.5
FINETECH					12	15	100		
MIYOTA CO., LTD.	CM315	SMD		9.0	15	15	0		
210.					15	15	100]	
	CM519	SMD		9.0	15	12	0]	
					15	12	100		

(5) XT1 oscillation: Crystal resonator ($T_A = -40$ to +85°C)

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

<R>

When doing so, check the conditions for using the RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KG3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Manufacturer	Part	SMD/	Frequency	Load Capacitance	Recomme	ended Circuit	Constants	Oscillation V	oltage Range
	Number	Lead	(kHz)	CL (pF)	C3 (pF)	C4 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
CITIZEN	CFS-206	Lead	32.768	12.5	22	18	0	1.8	5.5
FINETECH					22	18	100		
MIYOTA CO.,				9.0	12	15	0		
					12	15	100		

(6) XT1 oscillation: Crystal resonator ($T_A = -20$ to $+70^{\circ}$ C)

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

When doing so, check the conditions for using the RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KG3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

<R>

Standard Products

(2) External bus interface (3/3)

- (b) Read/write cycle (CLKOUT asynchronous)
 - Conventional-specification products (µPD78F116x)
 - $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle	tсүк2	<18>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
RD low-level width	twrdl2	<19>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.8tсүк2 – 40		2.2t сүк2	ns
WR0, WR1 low-level width	twwRL2	<20>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8tсүк2 – 40		1.2t сүк2	ns
Data input setup time to $\overline{\text{RD}} \uparrow$	tsrddi2	<21>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	90			ns
Data input hold time from $\overline{\mathrm{RD}} \uparrow$	thrddi2	<22>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0			ns
Data output setup time to $\overline{\text{WR0}}, \overline{\text{WR1}} \downarrow$	tswrod2	<23>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
Data output hold time from $\overline{\text{WR0}}, \overline{\text{WR1}}$	t hkod2	<24>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2			ns
Delay time from $\overline{RD}\downarrow$ to address	tdrda2	<25>	$2.7~V \le V_{\text{DD}} \le 5.5~V$			5	ns
Address setup time to $\overline{\text{WR0}}$, $\overline{\text{WR1}}\downarrow$	tswra2	<26>	$2.7~V \le V_{\text{DD}} \le 5.5~V$	tсүк2 – 5			ns

Expanded-specification products (μPD78F116xA)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Sym	bol	Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle	tсук2 <18>		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	200			ns
RD low-level width	twrdl2	<19>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.8tсүк2 – 40		2.2tсүк2	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.8tсүк2 – 60		2.2tсүк2	ns
WR0, WR1 low-level width	twwrl2	<20>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8tсүк2 – 40		1.2t сүк2	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0.8tсүк2 – 60		1.2t сүк2	ns
Data input setup time to \overline{RD}	tsrddi2	<21>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	90			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	170			ns
Data input hold time from $\overline{\mathrm{RD}}$	thrddi2	<22>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0			ns
Data output setup time to $\overline{\mathrm{WR0}}, \overline{\mathrm{WR1}} \downarrow$	tswrod2	<23>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	tсүк2 – 15			ns
Data output hold time from $\overline{\text{WR0}}, \overline{\text{WR1}}$	t hkod2	<24>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	2			ns
Delay time from $\overline{RD}\downarrow$ to address	tdrda2	<25>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			5	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			15	ns
Address setup time to $\overline{\text{WR0}}, \overline{\text{WR1}}\downarrow$	tswra2	<26>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	tсүк2 – 15			ns

- Cautions 1. CLKOUT output is not used during CLKOUT asynchronous operation, but a CPU wait occurs according to the setting of bits 4 and 5 (EW0, EW1) of the memory expansion mode control register (MEM). When fcLk is sufficiently high, insert a wait by setting the EW0 and EW1 bits.
 - 2. Do not use the WAIT pin during CLKOUT asynchronous operation. Use the separate bus mode during CLKOUT asynchronous operation.
- Remarks 1. fcLK: CPU/peripheral hardware clock frequency
 - 2. CL: The pin load capacitance is 15 pF.
 - **3.** Test points: VOH = 0.8VDD, VOL = 0.2VDD

- (3) Serial interface: Serial array unit (15/18)
- Caution Select the TTL input buffer for SIp and SCKp and the N-ch open-drain output (VDD tolerance) mode for SOp by using the PIMg and POMg registers.
- **Remarks 1.** p: CSI number (p = 01, 10, 20), g: PIM and POM number (g = 0, 4, 14)
 - Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
 fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of the SMRmn register. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2))
 - **4.** V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
 - $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V;~V\text{ih} = 2.2~V,~V\text{il} = 0.8~V$
 - $2.7~V \leq V_{\text{DD}} \leq 4.0~V,~2.3~V \leq V_{\text{b}} \leq 2.7~V;~V_{\text{IH}} = 2.0~V,~V_{\text{IL}} = 0.5~V$
 - **5.** CSI00 cannot communicate at different potential. Use CSI01, CSI10, and CSI20 for communication at different potential.

(A) Grade Products

A/D Converter Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.3 \text{ V} \le \text{V}_{\text{DD}} = \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le 5.5 \text{ V}, 2.3 \text{ V} \le \text{AV}_{\text{REF0}} \le \text{V}_{\text{DD}}, 1.8 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				10	bit
Overall error ^{Notes 1, 2}	AINL	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$			±0.4	%FSR
		$2.7~V \leq AV_{\text{REF0}} < 4.0~V$			±0.5	%FSR
		$2.3~V \leq AV_{\text{REF0}} < 2.7~V$			±0.7	%FSR
Conversion time	t CONV	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$	6.1		66.6	μs
		$2.7~V \leq AV_{\text{REF0}} < 4.0~V$	12.2		66.6	μs
		$2.3~V \leq AV_{\text{REF0}} < 2.7~V$	27		66.6	μs
Zero-scale error ^{Notes 1, 2}	EZS	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$			±0.4	%FSR
		$2.7~V \leq AV_{\text{REF0}} < 4.0~V$			±0.5	%FSR
		$2.3~V \leq AV_{\text{REF0}} < 2.7~V$			±0.5	%FSR
Full-scale error ^{Notes 1, 2}	EFS	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$			±0.4	%FSR
		$2.7~V \leq AV_{\text{REF0}} < 4.0~V$			±0.5	%FSR
		$2.3~V \leq AV_{\text{REF0}} < 2.7~V$			±0.5	%FSR
Integral linearity error ^{Note 1}	ILE	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$			±2.5	LSB
		$2.7~V \leq AV_{\text{REF0}} < 4.0~V$			±3.5	LSB
		$2.3~V \leq AV_{\text{REF0}} < 2.7~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	$4.0~V \leq AV_{\text{REF0}} \leq 5.5~V$			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF0}} < 4.0 \text{ V}$			±1.5	LSB
		$2.3 \text{ V} \leq AV_{\text{REF0}} < 2.7 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN	$2.3 \text{ V} \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$	AVss		AV _{REF0}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

		(16/35)				
	nc	Function	Details of	Cautions	Pag	e
oter	catio					
hap	ssifi					
0	Clas					
-	Ŧ			When a write operation is performed to the Λ/D converter mode register ($\Lambda D \Lambda$)	n 279	
er 1	So	A/D	A/D conversion	analog input channel specification register (ADS), and A/D port configuration register	p.370	Ш
apte		conventer		(ADPC) the contents of ADCP and ADCPH may become undefined. Read the		
ü				(ADFO), the contents of ADCH and ADCHT may become underlined. Head the		
			operation	ADPC. Using a timing other than the above may cause an incorrect conversion		
			operation	result to be read		
			A/D conversion	When a write operation is performed to the A/D converter mode register (ADM).	n 378	
			result register	analog input channel specification register (ADS), and A/D port configuration register	p.070	-
			(ADCR.	(ADPC), the contents of ADCR and ADCRH may become undefined. Read the		
			ADCRH) read	conversion result following conversion completion before writing to ADM, ADS, and		
			operation	ADPC. Using a timing other than the above may cause an incorrect conversion		
				result to be read.		
			Starting the A/D	Start the A/D converter after the AVREF0 and AVREF1 voltages (the reference voltages)	p.379	
01	t t	54	converter	When action the D/A converter he sum to get DAOCNI to 1 first 16 DAOCNI .		
r 12	Sof	D/A	PER0:	when setting the D/A converter, be sure to set DACEN to 1 first. If DACEN = 0, writing to a control register of the D/A converter is ignored, and even if the register is	p.382	
pte		converter	Peripheral	read only the default value is read (except for port mode register 11 (PM11) and port		
Che			enable register u	register 11 (P11)).		
				Be sure to clear bit 1 of the PER0 register to 0.	p.382	
			Operation in	Make the interval for writing DACSn of the same channel by one clock longer than	p.385	
			normal mode	fcLK. If writing is successively performed, only the value written last will be converted.		_
			Operation in	Make the interval for generating a start trigger to the same channel by one clock	p.386	
			real-time output	longer than $f_{\text{CLK}}.$ If a start trigger is successively generated for every $f_{\text{CLK}},\ D/A$	-	
			mode	conversion will be performed only at the first trigger.		
				Note the following points in the procedure (i to iii) for outputting an arbitrary value in	p.386	
				<3>.		
				• Do not generate the start trigger of the real-time output mode before enabling D/A		
				conversion operation in <3> after the value is set to the DACSn register in ii.		
				• An arbitrary value cannot be output in <3> if the DACEN bit of the PERU register is		
			1/O function of	Cleared once after the value is set to the DACSh register in it.	n 007	
			digital ports	The digital port I/O function, which is the alternate function of the ANOU and ANOT	p.387	Ц
			alternately used	puring D/A conversion 0 is read from the B11 register in input mode		
			as ANO0, ANO1			
			P11, PM11	Do not read/write the P11 register and do not change the setting of the PM11 register	p.387	
			registers	during D/A conversion (otherwise the conversion accuracy may decrease).		
			ANO0, ANO1	It is recommended that both the ANO0 and ANO1 pins be used as analog output pins	p.387	
			pins	or digital I/O pins, that is, use these two channels for the same application (if these		
				pins are used for the different applications, the conversion accuracy may decrease).		
			DACSn register	In the real-time output mode, set the DACSn register value before the timer trigger is	p.387	
				generated. In addition, do not change the set value of the DACSn register while the		
				trigger signal is output.		
			Changing	Before changing the operation mode, be sure to clear the DACEn bit of the DAM	p.387	
	-		operation mode	register to 0 (D/A conversion stop).		
	larc		Port alternately	When using the port that functions alternately as the ANO0 or ANO1 pin, use it as the	p.387	
	-		used as ANOU	port input with rew level changes.		
1	1			Stop the conversion performed by the D/A converter when supplying All or	n 207	
1	1		Applying power	Stop the conversion performed by the D/A converter when supplying AVREF1 Or ΔV_{PEF2} (the reference voltages for the A/D converter) starts or stops	p.387	Ц
			disconnecting	A ANDER THE MICE AND CONVERENT STATES OF STOPS.		
			power from			
			AVREF1 and AVREF0			
	1	1			1	

		(21/24)
Edition	Description	Chapter
8th edition	Modification of Figure 13-36 Timing Chart of Master Reception (in Single- Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	CHAPTER 13 SERIAL ARRAY UNIT
	Change of Figure 13-40 Procedure for Stopping Master Transmission/Reception	
	Change of Figure 13-41 Procedure for Resuming Master Transmission/Reception	
	Modification of Figure 13-42 Timing Chart of Master Transmission/Reception (in Single-Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Modification of Figure 13-44 Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Modification of Figure 13-45 Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Change of transfer rate in 13.5.4 Slave transmission	
	Change of Figure 13-48 Procedure for Stopping Slave Transmission	
	Change of Figure 13-49 Procedure for Resuming Slave Transmission	
	Change of Figure 13-50 Timing Chart of Slave Transmission (in Single- Transmission Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Change of Figure 13-52 Timing Chart of Slave Transmission (in Continuous Transmission Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Change of Figure 13-53 Flowchart of Slave Transmission (in Continuous Transmission Mode)	
	Change of transfer rate in 13.5.5 Slave reception	
	Change of Figure 13-57 Procedure for Resuming Slave Reception	
	Modification of Figure 13-58 Timing Chart of Slave Reception (in Single- Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Change of transfer rate in 13.5.6 Slave transmission/reception	
	Change of Figure 13-62 Procedure for Stopping Slave Transmission/Reception	
	Change of Figure 13-63 Procedure for Resuming Slave Transmission/Reception	
	Modification of Figure 13-64 Timing Chart of Slave Transmission/Reception (in Single-Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Modification of Figure 13-66 Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)	
	Modification of Figure 13-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Change of Note 2 in Table 13-2 Selection of Operation Clock	
	Addition of Caution to 13.6 Operation of UART (UART0, UART1, UART2, UART3) Communication	
	Change of Figure 13-70 Procedure for Stopping UART Transmission	
	Change of Figure 13-72 Timing Chart of UART Transmission (in Single- Transmission Mode)	
	Change of Figure 13-74 Timing Chart of UART Transmission (in Continuous Transmission Mode)	
	Change of 13.6.2 UART reception	
	Change of (b) Serial output enable register m (SOEm) in Figure 13-76 Example of Contents of Registers for UART Reception of UART (UART0, UART1, UART2, UART3)	
	Modification of Figure 13-80 Timing Chart of UART Reception	
	Modification of transfer data length in 13.6.3 LIN transmission	
	Change of Note 2 in Figure 13-82 Transmission Operation of LIN	