E·X Renesas Electronics America Inc - UPD78F1163AGF-GAS-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1163agf-gas-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User's Manual

78K0R/KG3

16-bit Single-Chip Microcontrollers

μPD78F1162, 78F1162A, 78F1162A(A) μPD78F1163, 78F1163A, 78F1163A(A) μPD78F1164, 78F1164A, 78F1164A(A) μPD78F1165, 78F1165A, 78F1165A(A) μPD78F1166, 78F1166A, 78F1166A(A) μPD78F1167, 78F1167A, 78F1167A(A) μPD78F1168, 78F1168A, 78F1168A(A)

Document No. U17894EJ9V0UD00 (9th edition) Date Published July 2009 NS

© NEC Electronics Corporation 2006 Printed in Japan

(c) TOOL1

This is a clock output pin for a debugger.

When the on-chip debug function is used, P41/TOOL1 pin can be used as follows by the mode setting on the debugger.

1-line mode: can be used as a port (P41).

2-line mode: used as a TOOL1 pin and cannot be used as a port (P41).

(d) TI04, TI05

These are the pins for inputting an external count clock/capture trigger to 16-bit timers 04 and 05.

(e) TO04, TO05

These are the timer output pins from 16-bit timers 04 and 05.

(f) SCK01

This is a serial clock I/O pin of serial interface CSI01.

(g) SI01

This is a serial data input pin of serial interface CSI01.

(h) SO01

This is a serial data output pin of serial interface CSI01.

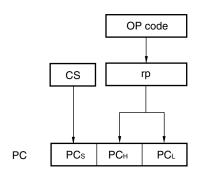
- Caution The function of the P40/TOOL0 pin varies as described in (a) to (c) below. In the case of (b) or (c), make the specified connection.
 - (a) In normal operation mode and when on-chip debugging is disabled (OCDENSET = 0) by an option byte (000C3H)
 - => Use this pin as a port pin (P40).
 - (b) In normal operation mode and when on-chip debugging is enabled (OCDENSET = 1) by an option byte (000C3H)
 - => Connect this pin to EVDD0 or EVDD1 via an external resistor, and always input a high level to the pin before reset release.
 - (c) When on-chip debug function is used, or in write mode of flash memory programmer
 => Use this pin as TOOL0.

Directly connect this pin to the on-chip debug emulator or a flash memory programmer, or pull it up by connecting it to EV_{DD0} or EV_{DD1} via an external resistor.

2.2.6 P50 to P57 (port 5)

P50 to P57 function as an 8-bit I/O port. These pins also function as external expansion I/O. The following operation modes can be specified in 1-bit units.

(1) Port mode


P50 to P57 function as an 8-bit I/O port. P50 to P57 can be set to input or output port in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 5 (PU5).

3.3.4 Register direct addressing

[Function]

Register direct addressing stores in the program counter (PC) the contents of a general-purpose register pair (AX/BC/DE/HL) and CS register of the current register bank specified with the instruction word as 20-bit data, and specifies the program address. Register direct addressing can be applied only to the CALL AX, BC, DE, HL, and BR AX instructions.

Address: F01	90H, F0	191H (TMR00) - F019	EH, FO	19FH (TMR07	Afte	r reset:	0000H	R/W					
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMR0n	CKS	0	0	CCS	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
	0n			0n	ER0n	ER0n 0n2 0n1 0n0 0n							0n3	0n2	0n1	0n0
	MD	MD	MD	MD	Ope	Operation mode of channel n Count operation of TCR								Independent operation		
	0n3	0n2	0n1	0n0												
	0	0	0	1/0	Interval timer mode					Counting down				Possible		
	0	1	0	1/0	Captur	re mode	Ð			Counting up				Possible		
	0	1	1	0	Event	counter	r mode			Counting down				Possible		
	1	0	0	1/0	One-co	ount mo	ode			Counti	ng dowr	า		Impos	sible	
	1	1	0	0	Capture & one-count mode					Counti	ng up			Possible		
	Other than above Setting prohibited															
	The op	peration	of MD	On0 bits	varies	depend	ling on e	each op	eration	mode (see tab	le belov	w).			

Figure 7-6. Format of Timer Mode Register 0n (TMR0n) (3/3)

Operation mode (Value set by the MD0n3 to MD0n1 bits (see table above))	MD 0n0	Setting of starting counting and interrupt
 Interval timer mode (0, 0, 0) 	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
	1	Start trigger is valid during counting operation ^{Note} . At that time, interrupt is also generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated, either.
Other than above	•	Setting prohibited

Note If the start trigger (TS0n = 1) is issued during operation, the counter is cleared, an interrupt is generated, and recounting is started.

Remark n = 0 to 7

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of the PER0 register to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets the TPS0 register. Determines clock frequencies of CK00 and CK01.	
Channel default setting	Sets the TMR0n, TMR0p, and TMR0q registers of each channel to be used (determines operation mode of channels). An interval (period) value is set to the TDR0n register of	Channel stops operating. (Clock is supplied and some power is consumed.)
	the master channel, and a duty factor is set to the TDR0p and TDR0p registers of the slave channel.	
	Sets slave channel. The TOM0p and TOM0q bits of the TOM0 register are set to 1 (combination operation mode). Clears the TOL0p and TOL0q bits to 0. Sets the TO0p and TO0q bits and determines default	The TO0p and TO0q pins go into Hi-Z output state.
		The TO0p and TO0q default setting levels are output when the port mode register is in output mode and the port register is 0.
	Sets TOE0p or TOE0q to 1 and enables operation of TO0p or TO0q.	TO0p or TO0q does not change because channel stops operating.
	Clears the port register and port mode register to 0.	The TO0p and TO0q pins output the TO0p and TO0q set levels.

Figure 7-69. Operation Procedure When Multiple PWM Output Function Is Used (1/2)

Remarks 1. n = 0, 2, 4

2. p = n + 1; q = n + 2

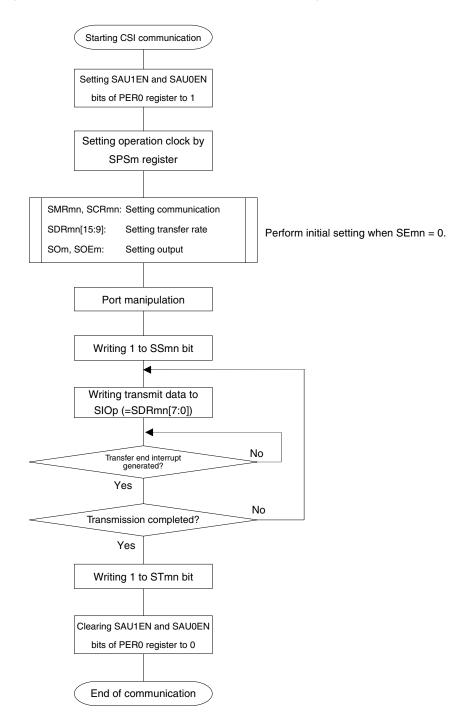


Figure 13-29. Flowchart of Master Transmission (in Single-Transmission Mode)

Caution After setting the PER0 register to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

13.5.3 Master transmission/reception

Master transmission/reception is an operation in which the 78K0R/KG3 outputs a transfer clock and transmits/receives data to/from another device.

3-Wire Serial I/O	CSI00	CSI01	CSI10	CSI20						
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1						
Pins used	SCK00, SI00, SO00	SCK01, SI01, SO01	SCK10, SI10, SO10	SCK20, SI20, SO20						
Interrupt	INTCSI00	INTCSI01	INTCSI10	INTCSI20						
	Transfer end interrupt (in can be selected.	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.								
Error detection flag	Overrun error detection flag (OVFmn) only									
Transfer data length	7 or 8 bits									
Transfer rate	Max. fclk/4 [Hz], Min. fclk/	$(2 \times 2^{11} \times 128) [Hz]^{Note}$ f	cLK: System clock frequenc	ÿ						
Data phase		starts at the start of the ope starts half a clock before the		peration.						
Clock phase	Selectable by CKPmn bit • CKPmn = 0: Forward • CKPmn = 1: Reverse									
Data direction	MSB or LSB first									

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 29 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) and CHAPTER 30 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)).

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2)

SE	MD		SOE	SO01	СКО	TXE	RXE	PM	P43	PM44	P44	PM	P45	PM	P11 Note 2	Operation		Pin Fi	unction	
01 Note 1	012	011	01		01	01	01	43				45		11 Note 2	Note 2	Mode	SCK01/ P43	SI01/P44	SO01/ P45	SI00/EX25/ RxD0/ P11 ^{Note 2}
0	0	0	0	1	1	0	0	× Note 3	× Note 3	Operation stop mode	P43	P44	P45	SI00/EX25/ P11						
1	0	0	0	1	1	0	1	1	×	1	×	× Note 3	× Note 3	× Note 3	× Note 3	Slave CSI01 reception	SCK01 (input)	SI01	P45	SI00/EX25/ P11
			1	0/1 Note 4	1	1	0	1	×	× Note 3	× Note 3	0	1	× Note 3	× Note 3	Slave CSI01 transmission	SCK01 (input)	P44	SO01	SI00/EX25/ P11
			1	0/1 Note 4	1	1	1	1	×	1	×	0	1	× Note 3	× Note 3	Slave CSI01 transmission /reception	SCK01 (input)	SI01	SO01	SI00/EX25/ P11
			0	1	0/1 Note 4	0	1	0	1	1	×	× Note 3	× Note 3	× Note 3	× Note 3	Master CSI01 reception	SCK01 (output)	SI01	P45	SI00/EX25/ P11
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	× Note 3	× Note 3	0	1	× Note 3	× Note 3	Master CSI01 transmission	SCK01 (output)	P44	SO01	SI00/EX25/ P11
			1	0/1 Note 4	0/1 Note 4	1	1	0	1	1	×	0	1	× Note 3	× Note 3	Master CSI01 transmission /reception	SCK01 (output)	SI01	SO01	SI00/EX25/ P11
	0	1	0	1	1	0	1	× Note 3	1	×	UART0 reception Notes 5, 6	P43	P44	P45	RxD0					

Table 13-6. Relationship Between Register Settings and Pins (Channel 1 of Unit 0: CSI01, UART0 Reception)

Notes 1. The SE0 register is a read-only status register which is set using the SS0 and ST0 registers.

- When channel 1 of unit 0 is set to UART0 reception, this pin becomes an RxD0 function pin. In this case, set channel 0 of unit 0 to operation stop mode or UART0 transmission (refer to **Table 13-5**).
 When channel 0 of unit 0 is set to CSI00, this pin cannot be used as an RxD0 function pin. In this case, set channel 1 of unit 0 to operation stop mode or CSI01.
- **3.** This pin can be set as a port function pin.
- 4. This is 0 or 1, depending on the communication operation. For details, refer to 13.3 (12) Serial output register m (SOm).
- 5. When using UART0 transmission and reception in a pair, set channel 0 of unit 0 to UART0 transmission (refer to **Table 13-5**).
- The SMR00 register of channel 0 of unit 0 must also be set during UART0 reception. For details, refer to 13.6.2 (1) Register setting.

Remark X: Don't care

Figure 14-2 shows a serial bus configuration example.

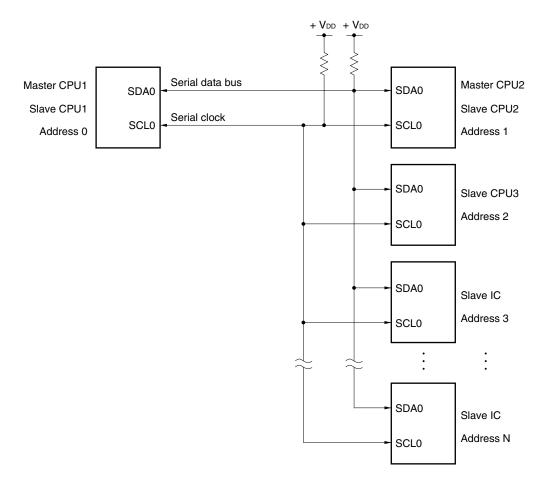


Figure 14-2. Serial Bus Configuration Example Using I²C Bus

(7) Port mode register 6 (PM6)

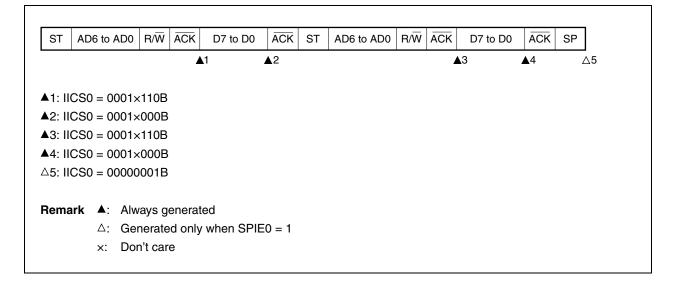
This register sets the input/output of port 6 in 1-bit units.

When using the P60/SCL0 pin as clock I/O and the P61/SDA0 pin as serial data I/O, clear PM60 and PM61, and the output latches of P60 and P61 to 0.

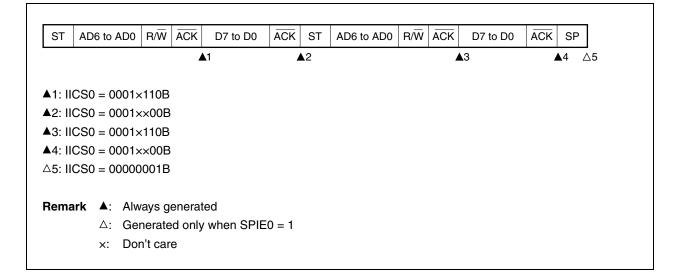
Set IICE0 (bit 7 of IIC control register 0 (IICC0)) to 1 before setting the output mode because the P60/SCL0 and P61/SDA0 pins output a low level (fixed) when IICE0 is 0.

PM6 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.


Figure 14-11. Format of Port Mode Register 6 (PM6)

Address:	FFF26H	After reset:	After reset: FFH R/W 6 5 4 3 2 1 PM66 PM65 PM64 PM63 PM62 PM61					
Symbol	7	6	5	4	3	2	1	0
PM6	PM67	PM66	PM65	PM64	PM63	PM62	PM61	PM60


	PM6n	P6n pin I/O mode selection (n = 0 to 7)						
Γ	0	Dutput mode (output buffer on)						
	1	Input mode (output buffer off)						

(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop

(i) When WTIM0 = 0 (after restart, matches with SVA0)

(ii) When WTIM0 = 1 (after restart, matches with SVA0)

14.6 Timing Charts

When using the I²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

After outputting the slave address, the master device transmits the TRC0 bit (bit 3 of IIC status register 0 (IICS0)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 14-28 and 14-29 show timing charts of the data communication.

The shift operation of IIC shift register 0 (IIC0) is synchronized with the falling edge of the serial clock (SCL0). The transmit data is transferred to the SO0 latch and is output (MSB first) via the SDA0 pin.

Data input via the SDA0 pin is captured into IIC0 at the rising edge of SCL0.

	Hardware	After Reset Acknowledgment ^{Note 1}		
Program counter (P	C)	The contents of the reset vector table (0000H, 0001H) are set.		
Stack pointer (SP)		Undefined		
Program status wor	d (PSW)	06H		
RAM	Data memory	Undefined ^{Note 2}		
	General-purpose registers	Undefined ^{Note 2}		
Port registers (P0 to	P8, P11 to P15) (output latches)	00H		
Port mode registers	PM0 to PM8, PM11, PM12, PM14, PM15	FFH		
	PM13	FEH		
Port input mode reg	isters 0, 4, 14 (PIM0, PIM4, PIM14)	00H		
Port output mode re	00H			
Pull-up resistor opti	00H			
Memory extension	node control register (MEM)	00H		
Clock operation mo	de control register (CMC)	00H		
Clock operation sta	СОН			
Processor mode co	ntrol register (PMC)	00H		
System clock control	09H			
Oscillation stabilization	tion time counter status register (OSTC)	00H		
Oscillation stabilization	tion time select register (OSTS)	07H		
Noise filter enable r	egisters 0, 1 (NFEN0, NFEN1)	00H		
Peripheral enable re	egisters 0, 1 (PER0, PER1)	00H		
Internal high-speed	oscillator trimming register (HIOTRM)	10H		
Operation speed me	ode control register (OSMC)	00H		
Timer array unit (TAU)	Timer data registers 00, 01, 02, 03, 04, 05, 06, 07 (TDR00, TDR01, TDR02, TDR03, TDR04, TDR05, TDR06, TDR07)	0000H		
	Timer mode registers 00, 01, 02, 03, 04, 05, 06, 07 (TMR00, TMR01, TMR02, TMR03, TMR04, TMR05, TMR06, TMR07)	0000H		
	Timer status registers 00, 01, 02, 03, 04, 05, 06, 07 (TSR00, TSR01, TSR02, TSR03, TSR04, TSR05, TSR06, TSR07)	0000H		
	Timer input select register 0 (TIS0)	00H		
	Timer counter registers 00, 01, 02, 03, 04, 05, 06, 07 (TCR00, TCR01, TCR02, TCR03, TCR04, TCR05, TCR06, TCR07)	FFFFH		
	Timer channel enable status register 0 (TE0)	0000H		
	Timer channel start register 0 (TS0)	0000H		
	Timer channel stop register 0 (TT0)	0000H		
	Timer clock select register 0 (TPS0)	0000H		
	Timer output register 0 (TO0)	0000H		
	Timer output enable register 0 (TOE0)	0000H		
	Timer output level register 0 (TOL0)	0000H		
	Timer output mode register 0 (TOM0)	0000H		

Table 20-2. Hardware Statuses After Reset Acknowledgment (1/3)

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.

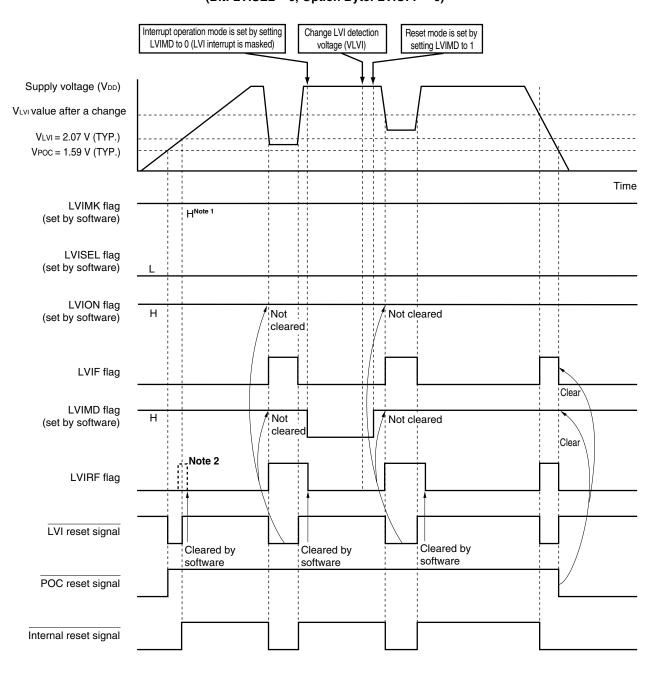


Figure 22-6. Timing of Low-Voltage Detector Internal Reset Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 0)

Notes 1. The LVIMK flag is set to "1" by reset signal generation.

LVIRF is bit 0 of the reset control flag register (RESF).
 When the LVI default start function (bit 0 (LVIOFF) of 000C1H = 0) is used, the LVIRF flag may become 1 from the beginning due to the power-on waveform.
 For details of RESF, see CHAPTER 20 RESET FUNCTION.

24.4 Setting of Option Byte

The user option byte and on-chip debug option byte can be set using the RA78K0R or PM+ linker option, in addition to describing to the source. When doing so, the contents set by using the linker option take precedence, even if descriptions exist in the source, as mentioned below.

See the RA78K0R Assembler Package User's Manual for how to set the linker option.

A software description example of the option byte setting is shown below.

OPT	CSEG	OPT_BY	ΤE	
	DB	10H	;	Does not use interval interrupt of watchdog timer,
			;	Enables watchdog timer operation,
			;	Window open period of watchdog timer is 25%,
			;	Overflow time of watchdog timer is 2 ¹⁰ /fiL,
			;	Stops watchdog timer operation during HALT/STOP mode
	DB	OFFH	;	Stops LVI default start function
	DB	OFFH	;	Reserved area
	DB	85H	;	Enables on-chip debug operation, does not erase flash memory
			;	data when security ID authorization fails

When the boot swap function is used during self programming, 000C0H to 000C3H is switched to 010C0H to 010C3H. Describe to 010C0H to 010C3H, therefore, the same values as 000C0H to 000C3H as follows.

OPT2	CSEG	AT	010C0H	
	DB		10H	; Does not use interval interrupt of watchdog timer,
				; Enables watchdog timer operation,
				; Window open period of watchdog timer is 25%,
				; Overflow time of watchdog timer is 2 ¹⁰ /fiL,
				; Stops watchdog timer operation during HALT/STOP mode
	DB		OFFH	; Stops LVI default start function
	DB		OFFH	; Reserved area
	DB		85H	: Enables on-chip debug operation, does not erase flash memory
				; data when security ID authorization fails

Caution To specify the option byte by using assembly language, use OPT_BYTE as the relocation attribute name of the CSEG pseudo instruction. To specify the option byte to 010C0H to 010C3H in order to use the boot swap function, use the relocation attribute AT to specify an absolute address.

Standard Products

Manufacturer	Part Number	SMD/	Frequency	Recommended	Circuit Constants	Oscillation V	oltage Range	
		Lead	(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Manufacturing	CSTCE12M0G55-R0	SMD	12.0	Internal (33)	Internal (33)	1.8	5.5	
	CSTCE16M0V53-R0	SMD	16.0	Internal (15)	Internal (15)	1.8		
Co., Ltd.	CSTLS16M0X51-B0	Lead		Internal (5)	Internal (5)	1.8		
	CSTCE20M0V53-R0 SME		20.0	Internal (15)	Internal (15)	1.9		
	CSTCG20M0V53-R0	Small SMD		Internal (15)	Internal (15)	2.0		
	CSTLS20M0X51-B0	Lead		Internal (5)	Internal (5)	1.9		
TOKO, Inc.	DCRHYC(P)12.00A	Lead	12.0	Internal (22)	Internal (22)	1.8	5.5	
	DCRHZ(P)16.00A-15	Lead	16.0	Internal (15)	Internal (15)			
	DCRHZ(P)20.00A-15 Lead		20.0	Internal (15)	Internal (15)	2.0		
	DECRHZ20.00	SMD		Internal (10)	Internal (10)	1.8		

(3) X1 oscillation: Ceramic resonator (AMPH = 1, RMC = 00H, $T_A = -40$ to $+85^{\circ}$ C)

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

<R>

When doing so, check the conditions for using the AMPH bit, RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KG3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

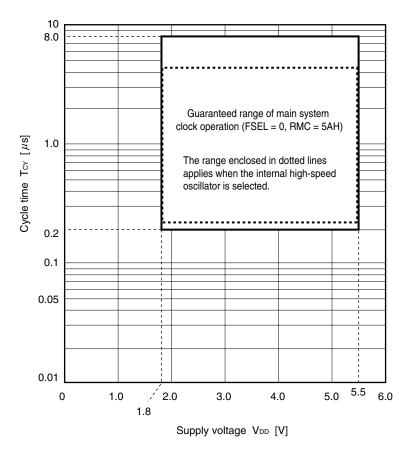
Standard Products

(2) External bus interface (3/3)

- (b) Read/write cycle (CLKOUT asynchronous)
 - Conventional-specification products (µPD78F116x)
 - $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle	tcyk2	<18>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
RD low-level width	twrdl2	<19>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.8tсүк2 – 40		2.2t сүк2	ns
WR0, WR1 low-level width	twwRL2	<20>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8tсүк2 – 40		1.2t сүк2	ns
Data input setup time to $\overline{RD} \uparrow$	tsrddi2	<21>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	90			ns
Data input hold time from $\overline{\mathrm{RD}} \uparrow$	thrddi2	<22>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0			ns
Data output setup time to $\overline{\text{WR0}}, \overline{\text{WR1}}\downarrow$	tswROD2	<23>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
Data output hold time from $\overline{\text{WR0}}$, $\overline{\text{WR1}}$	t hkod2	<24>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2			ns
Delay time from $\overline{RD}\downarrow$ to address	tdrda2	<25>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			5	ns
Address setup time to $\overline{\text{WR0}}, \overline{\text{WR1}}\downarrow$	tswra2	<26>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns

Expanded-specification products (μPD78F116xA)


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Sym	bol	Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle	tсүк2	<18>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	200			ns
RD low-level width	twrdl2	<19>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.8tсүк2 – 40		2.2tсүк2	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.8tсүк2 – 60		2.2tсүк2	ns
$\overline{\text{WR0}}, \overline{\text{WR1}}$ low-level width	twwrl2	<20>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8tсүк2 – 40		1.2t сүк2	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0.8tсүк2 – 60		1.2t сүк2	ns
Data input setup time to $\overline{RD} \uparrow$	tsrddi2	<21>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	90			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	170			ns
Data input hold time from \overline{RD}^{\uparrow}	thrddi2	<22>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0			ns
Data output setup time to $\overline{WR0}, \overline{WR1} \downarrow$	tswrod2	<23>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	tсүк2 – 15			ns
Data output hold time from $\overline{\text{WR0}}, \overline{\text{WR1}}$	t hkod2	<24>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	2			ns
Delay time from $\overline{RD}\downarrow$ to address	tdrda2	<25>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			5	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			15	ns
Address setup time to $\overline{\text{WR0}}$, $\overline{\text{WR1}}\downarrow$	tswra2	<26>	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tсүк2 – 5			ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	tсүк2 – 15			ns

- Cautions 1. CLKOUT output is not used during CLKOUT asynchronous operation, but a CPU wait occurs according to the setting of bits 4 and 5 (EW0, EW1) of the memory expansion mode control register (MEM). When fcLk is sufficiently high, insert a wait by setting the EW0 and EW1 bits.
 - 2. Do not use the WAIT pin during CLKOUT asynchronous operation. Use the separate bus mode during CLKOUT asynchronous operation.
- Remarks 1. fcLK: CPU/peripheral hardware clock frequency
 - 2. CL: The pin load capacitance is 15 pF.
 - **3.** Test points: VOH = 0.8VDD, VOL = 0.2VDD

(A) Grade Products

(1) Basic operation (4/6)

Minimum instruction execution time during main system clock operation (FSEL = 0, RMC = 5AH)

- Remarks 1. FSEL: Bit 0 of the operation speed mode control register (OSMC) RMC: Regulator mode control register
 - 2. The entire voltage range is 5 MHz (MAX.) when RMC is set to 5AH.

					(34/3	35)
Chapter	Classification	Function	Details of Function	Cautions	Pag	е
Chapter 30	Soft	Electrical specifications ((A) grade products)	During communication at same potential (CSI mode) (master mode, SCKp internal clock input)	Select the normal input buffer for SIj and the normal output mode for SOj and SCKj by using the PIMg and POMg registers.	p.864	
			During communication at same potential (CSI mode) (slave mode, SCKp external clock input)	Select the normal input buffer for SIj and SCKj and the normal output mode for SOj by using the PIMg and POMg registers.	p.865	
			During communication at same potential (simplified I ² C mode)	Select the normal input buffer and the N-ch open-drain output (V_{DD} tolerance) mode for SDAr and the normal output mode for SCLr by using the PIMg and POMg registers.	p.868	
			During communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output)	Select the TTL input buffer for RxDq and the N-ch open-drain output (VDD tolerance) mode for TxDq by using the PIMg and POMg registers.	pp.869 870, 87	
			During communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output)	Select the TTL input buffer for SIp and the N-ch open-drain output (V _{DD} tolerance) mode for SOp and \overline{SCKp} by using the PIMg and POMg registers.	pp.873 874, 87	
			During communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)	Select the TTL input buffer for SIp and \overline{SCKp} and the N-ch open-drain output (V _{DD} tolerance) mode for SOp by using the PIMg and POMg registers.	pp.877 878	
			During communication at different potential (2.5 V, 3 V) (simplified I ² C mode)	Select the TTL input buffer and the N-ch open-drain output (V_{DD} tolerance) mode for SDAr and the N-ch open-drain output (V_{DD} tolerance) mode for SCLr by using the PIMg and POMg registers.		

(14/24)

Edition	Description	Chapter			
5th edition	Change of transfer rate in 13.4.5 Slave reception	CHAPTER 13 SERIAL			
	Change of transfer rate in 13.4.6 Slave transmission/reception	ARRAY UNIT			
	Change of Note in 13.4.7 (2)				
	Addition of setting and Note to Table 13-2 Selection of Operation Clock				
	Change of transfer rate and addition of Note				
	Change of setting of (e) Serial mode register mr (SMRmr) in Figure 13-74 Example of Contents of Registers for UART Reception of UART (UART0, UART1, UART2, UART3)				
	Addition of setting and Note to Table 13-3 Selection of Operation Clock				
	Addition of setting and Note to Table 13-4 Selection of Operation Clock				
	Additions of description to 16.6 (4) DMA pending instruction	CHAPTER 16 DMA CONTROLLER			
	Change of Figure 19-4 HALT Mode Release by Reset	CHAPTER 19			
	Change of Figure 19-7 STOP Mode Release by Reset	STANDBY FUNCTION			
	Change of reset processing in Figure 20-2 Timing of Reset by RESET Input	CHAPTER 20 RESET			
	Change of reset processing in Figure 20-4 Timing of Reset in STOP Mode by RESET Input	FUNCTION			
	Change of Caution 2 in Figure 20-5 Format of Reset Control Flag Register (RESF)				
	Change of Figure 21-2 Timing of Generation of Internal Reset Signal by Power- on-Clear Circuit and Low-Voltage Detector (1/2)	CHAPTER 21 POWE ON-CLEAR CIRCUIT			
	Change of Figure 21-2 Timing of Generation of Internal Reset Signal by Power- on-Clear Circuit and Low-Voltage Detector (2/2) and addition of Note				
	Change of Figure 21-3 Example of Software Processing After Reset Release				
	Change of Note 4 in Figure 22-2 Format of Low-Voltage Detection Register (LVIM) and addition of Caution 3	CHAPTER 22 LOW- VOLTAGE DETECTOP			
	Change of Caution 2 in Figure 22-3 Format of Low-Voltage Detection Level Select Register (LVIS)				
	Change of <5> in 22.4.1 (1) (a)	-			
	Change of Note 2 in Figure 22-5 Timing of Low-Voltage Detector Internal Reset Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 1)	-			
	Change of description and Caution in 22.4.1 (1) (b)]			
	Change of Figure 22-6 Timing of Low-Voltage Detector Internal Reset Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 0) and Note				
	Change of <4> in 22.4.1 (2)				
	Change of Note 2 in Figure 22-7 Timing of Low-Voltage Detector Internal Reset Signal Generation (Bit: LVISEL = 1)				
	Change of <5> in 22.4.2 (1)				
	Additions of Note 3 to Figure 22-8 Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 1)				
	Change of description and Caution in 22.4.2 (1) (b)	4			
	Change of Figure 22-9 Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 0) and addition of Note				
	Change of <4> in 22.4.2 (2)				
	Addition of Note 3 to Figure 22-10 Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 1)				
	Change of Figure 22-11 Example of Software Processing After Reset Release	1			