

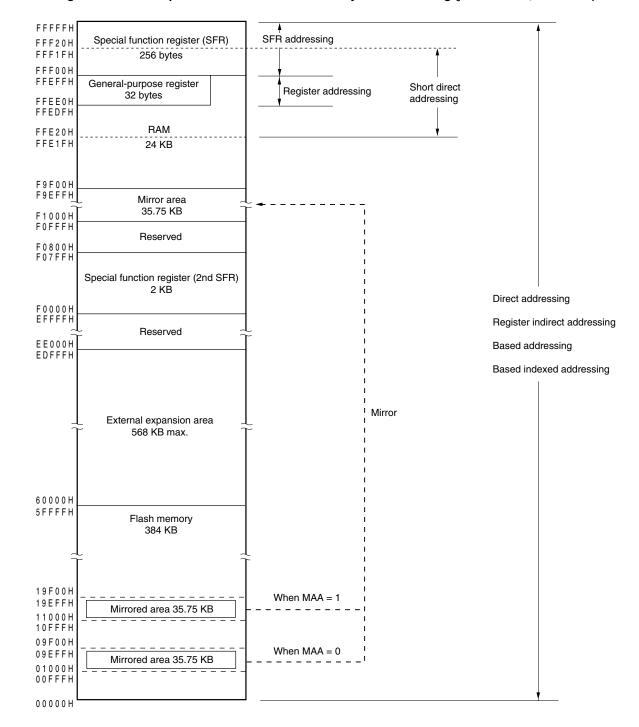
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Detuns	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1165agc-ueu-ax

Email: info@E-XFL.COM

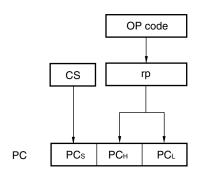
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

<R> Figure 3-14. Correspondence Between Data Memory and Addressing (µPD78F1167, 78F1167A)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	ulable Bit	Range	After Reset
				1-bit	8-bit	16-bit	
F0017H	A/D port configuration register	ADPC	R/W	-	\checkmark	-	10H
F0030H	Pull-up resistor option register 0	PU0	R/W			-	00H
F0031H	Pull-up resistor option register 1	PU1	R/W	\checkmark	\checkmark	-	00H
F0033H	Pull-up resistor option register 3	PU3	R/W		\checkmark	-	00H
F0034H	Pull-up resistor option register 4	PU4	R/W		\checkmark	-	00H
F0035H	Pull-up resistor option register 5	PU5	R/W	\checkmark	\checkmark	-	00H
F0036H	Pull-up resistor option register 6	PU6	R/W	\checkmark	\checkmark	_	00H
F0037H	Pull-up resistor option register 7	PU7	R/W		\checkmark	-	00H
F0038H	Pull-up resistor option register 8	PU8	R/W		\checkmark	-	00H
F003CH	Pull-up resistor option register 12	PU12	R/W	\checkmark	\checkmark	-	00H
F003DH	Pull-up resistor option register 13	PU13	R/W	\checkmark	\checkmark	-	00H
F003EH	Pull-up resistor option register 14	PU14	R/W	\checkmark	\checkmark	-	00H
F0040H	Port input mode register 0	PIM0	R/W	\checkmark	\checkmark	-	00H
F0044H	Port input mode register 4	PIM4	R/W		\checkmark	-	00H
F004EH	Port input mode register 14	PIM14	R/W		\checkmark	-	00H
F0050H	Port output mode register 0	POM0	R/W	\checkmark	\checkmark	-	00H
F0054H	Port output mode register 4	POM4	R/W	\checkmark	\checkmark	_	00H
F005EH	Port output mode register 14	POM14	R/W	\checkmark	\checkmark	_	00H
F0060H	Noise filter enable register 0	NFEN0	R/W	\checkmark	\checkmark	-	00H
F0061H	Noise filter enable register 1	NFEN1	R/W		\checkmark	-	00H
F00F0H	Peripheral enable register 0	PER0	R/W		\checkmark	-	00H
F00F1H	Peripheral enable register 1	PER1	R/W		\checkmark	-	00H
F00F2H	Internal high-speed oscillator trimming register	HIOTRM	R/W	-	\checkmark	-	10H
F00F3H	Operation speed mode control register	OSMC	R/W	-	\checkmark	-	00H
F00F4H	Regulator mode control register	RMC	R/W	-	\checkmark	-	00H
F00FEH	BCD adjust result register	BCDADJ	R	-	\checkmark	-	Undefined
F0100H	Serial status register 00	SSR00L SSR00	R	_		\checkmark	0000H
F0101H		_		-	_		
F0102H	Serial status register 01	SSR01L SSR01	R	-			0000H
F0103H		_		_	-		
F0104H	Serial status register 02	SSR02L SSR02	R	-	\checkmark		0000H
F0105H		_		-	-		
F0106H	Serial status register 03	SSR03L SSR03	R	-	\checkmark		0000H
F0107H		_		-	-		
F0108H	Serial flag clear trigger register 00	SIR00L SIR00	R/W	-	\checkmark		0000H
F0109H		_		-	-		
F010AH	Serial flag clear trigger register 01	SIR01L SIR01	R/W	I	\checkmark	\checkmark	0000H
F010BH]	_		I	-		
F010CH	Serial flag clear trigger register 02	SIR02L SIR02	R/W	-	\checkmark	\checkmark	0000H
F010DH]	_		I	_		
F010EH	Serial flag clear trigger register 03	SIR03L SIR03	R/W	I	\checkmark	\checkmark	0000H
F010FH				_	_		

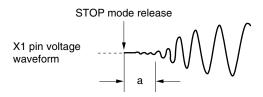

Table 3-6. Extended SFR (2nd SFR) List (1/5)

3.3.4 Register direct addressing

[Function]

Register direct addressing stores in the program counter (PC) the contents of a general-purpose register pair (AX/BC/DE/HL) and CS register of the current register bank specified with the instruction word as 20-bit data, and specifies the program address. Register direct addressing can be applied only to the CALL AX, BC, DE, HL, and BR AX instructions.

Address: FF	FA3H Afte	r reset: 07H	R/W						
Symbol	7	6	5	4	3	2	1	0	
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0	
	OSTS2	OSTS1	OSTS0		Oscillatio	on stabilization tim	ne selection		
						$f_x = 10 \text{ MHz}$	fx =	20 MHz	
	0	0	0	2 ⁸ /fx		25.6 <i>μ</i> s	Setting	prohibited	
	0	0	1	2 ⁹ /fx		51.2 <i>μ</i> s	25.6 <i>μ</i> s		
	0	1	0	2 ¹⁰ /fx		102.4 <i>μ</i> s	51.2 <i>μ</i> s		
	0	1	1	2 ¹¹ /fx		204.8 <i>µ</i> s	102.4 <i>μ</i>	S	
	1	0	0	2 ¹³ /fx		819.2 <i>μ</i> s	409.6 <i>µ</i> t	S	
	1	0	1	2 ¹⁵ /fx		3.27 ms	1.64 ms		
	1	1	0	2 ¹⁷ /fx		13.11 ms	6.55 ms		
	1	1	1	2 ¹⁸ /fx		26.21 ms	13.11 m	S	


Figure 6-5. Format of Oscillation Stabilization Time Select Register (OSTS)

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.

- 2. Setting the oscillation stabilization time to 20 μ s or less is prohibited.
- 3. To change the setting of the OSTS register, be sure to confirm that the counting operation of the OSTC register has been completed.
- 4. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
- 5. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.

In the following cases, set the oscillation stabilization time of OSTS to the value greater than or equal to the count value which is to be checked by the OSTC register.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)
- 6. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

(15) Port mode registers 0, 1, 3, 4, 13, 14 (PM0, PM1, PM3, PM4, PM13, PM14)

These registers set input/output of ports 0, 1, 3, 4, 13, and 14 in 1-bit units.

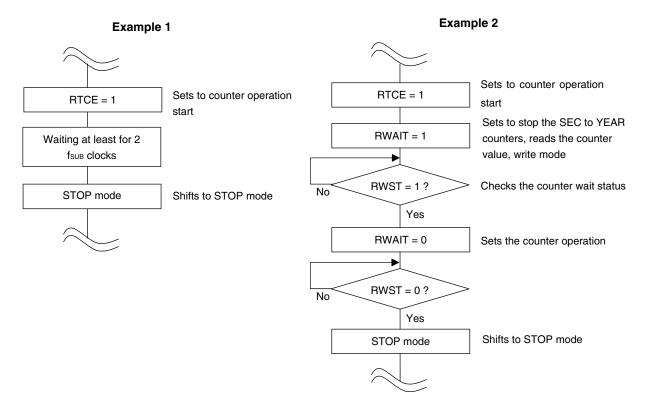
When using the P01/T000, P16/T001/TI01/INTP5/EX30, P17/T002/TI02/EX31, P31/T003/TI03/INTP4, P42/T004/TI04, P46/T005/TI05/INTP1, P131/T006/TI06, and P145/T007/TI07 pins for timer output, set PM01, PM16, PM17, PM31, PM42, PM46, PM131, and PM145 and the output latches of P01, P16, P17, P31, P42, P46, P131, and P145 to 0.

When using the P00/TI00, P16/T001/TI01/INTP5/EX30, P17/T002/TI02/EX31, P31/T003/TI03/INTP4, P42/T004/TI04, P46/T005/TI05/INTP1, P131/T006/TI06, and P145/T007/TI07 pins for timer input, set PM00, PM16, PM17, PM31, PM42, PM46, PM131, and PM145 to 1. At this time, the output latches of P00, P16, P17, P31, P42, P46, P131, and P145 may be 0 or 1.

PM0, PM1, PM3, PM4, PM13, and PM14 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

Figure 7-23. Format of Port Mode Registers 0, 1, 3, 4, 13, and 14 (PM0, PM1, PM3, PM4, PM13, PM14)

Address: FFF	20H After re	eset: FFH R/V	N						
Symbol	7	6	5	4	3	2	1	0	
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	
					<u>.</u>				
Address: FFF	21H After re	eset: FFH R/V	N						
Symbol	7	6	5	4	3	2	1	0	
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	
Address: FFF	23H After re	eset: FFH R/V	N						
Symbol	7	6	5	4	3	2	1	0	
PM3	1	1	1	1	1	1	PM31	PM30	
Address: FFF	24H After re	eset: FFH R/V	N						
Symbol	7	6	5	4	3	2	1	0	
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40	
Address: FFF	2DH After r	eset: FEH R/	W						
Symbol	7	6	5	4	3	2	1	0	
PM13	1	1	1	1	1	1	PM131	0	
Address: FFF	2EH After re	eset: FFH R/\	Ν						
Symbol	7	6	5	4	3	2	1	0	
PM14	1	1	PM145	PM144	PM143	PM142	PM141	PM140	
	PMmn		Pmn pin	I/O mode sele	ction (m = 0, 1,	3, 4, 13, 14; n	= 0 to 7)		
	0	Output mode	(output buffer o	on)					
	1	Input mode (o	put mode (output buffer off)						


8.4.2 Shifting to STOP mode after starting operation

Perform one of the following processing when shifting to STOP mode immediately after setting RTCE to 1.

However, after setting RTCE to 1, this processing is not required when shifting to STOP mode after the first INTRTC interrupt has occurred.

- Shifting to STOP mode when at least two subsystem clocks (fsuB) (about 62 μ s) have elapsed after setting RTCE to 1 (see Figure 8-20, Example 1).
- Checking by polling RWST to become 1, after setting RTCE to 1 and then setting RWAIT to 1. Afterward, setting RWAIT to 0 and shifting to STOP mode after checking again by polling that RWST has become 0 (see Figure 8-20, Example 2).

13.4 Operation Stop Mode

Each serial interface of serial array unit has the operation stop mode.

In this mode, serial communication cannot be executed, thus reducing the power consumption.

P04/SCK10/SCL10, In addition. the P02/SO10/TxD1, P03/SI10/SDA10/RxD1, P10/SCK00/EX24, P11/SI00/BxD0/EX25. P12/SO00/TxD0/EX26. P13/TxD3/EX27, P43/SCK01. P44/SI01. P45/SO01. P142/SCK20/SCL20, P143/SI20/SDA20/RxD2, or P144/SO20/TxD2 pin can be used as ordinary port pins in this mode.

13.4.1 Stopping the operation by units

The stopping of the operation by units is set by using peripheral enable register 0 (PER0).

PER0 is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

To stop the operation of serial array unit 0, set bit 2 (SAU0EN) to 0.

To stop the operation of serial array unit 1, set bit 3 (SAU1EN) to 0.

Figure 13-22. Peripheral Enable Register 0 (PER0) Setting When Stopping the Operation by Units

~

(a) Peripheral enable register 0 (PER0) ... Set only the bit of SAUm to be stopped to 0. 4

	7	0	5	4	3	2	I	0
PER0	RTCEN	DACEN	ADCEN	IIC0EN	SAU1EN	SAU0EN		TAU0EN
	×	×	×	×	0/1	0/1	0	0/1
		C	ontrol of SAU					
		0	: Stops supply	of input clock	(
		4	. Cumpling inn	ut ala al				

1: Supplies input clock

-

- Cautions 1. If SAUmEN = 0, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFEN0), port input mode registers (PIM0, PIM4, PIM14), port output mode registers (POM0, POM4, POM14), port mode registers (PM0, PM1, PM4, PM14), and port registers (P0, P1, P4, P14)).
 - 2. Be sure to clear bit 1 of the PER0 register to 0.

Remark m: Unit number (m = 0, 1), : Setting disabled (fixed by hardware)

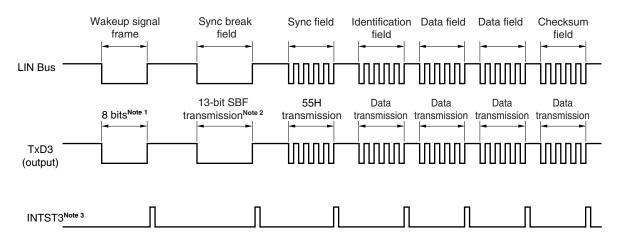
x: Bits not used with serial array units (depending on the settings of other peripheral functions) 0/1: Set to 0 or 1 depending on the usage of the user

13.5.7 Calculating transfer clock frequency

The transfer clock frequency for 3-wire serial I/O (CSI00, CSI01, CSI10, CSI20) communication can be calculated by the following expressions.

(1) Master

(Transfer clock frequency) = {Operation clock (MCK) frequency of target channel} ÷ (SDRmn[15:9] + 1) ÷ 2 [Hz]


(2) Slave

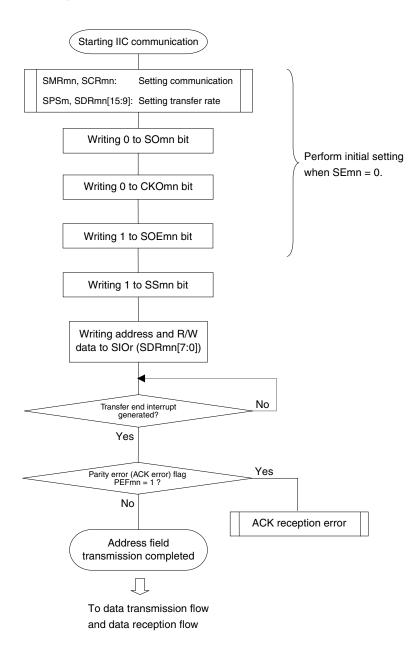
(Transfer clock frequency) = {Frequency of serial clock (SCK) supplied by master}^{Note} [Hz]

Note The permissible maximum transfer clock frequency is fmck/6.

- **Remarks 1.** The value of SDRmn[15:9] is the value of bits 15 to 9 of the SDRmn register (0000000B to 1111111B) and therefore is 0 to 127.
 - **2.** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2)

The operation clock (MCK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

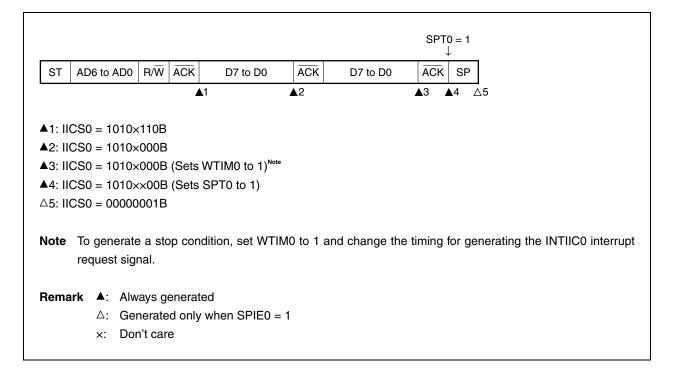
Figure 13-85. Transmission Operation of LIN

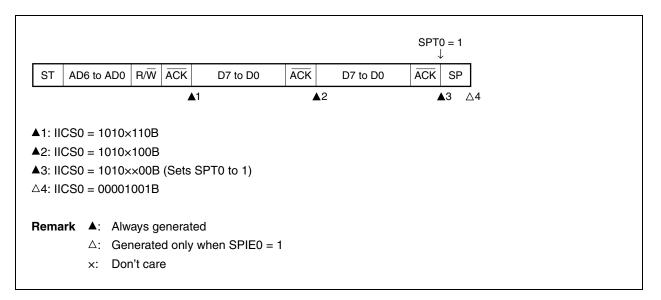

Notes 1. The baud rate is set so as to satisfy the standard of the wakeup signal and data of 00H is transmitted.

A sync break field is defined to have a width of 13 bits and output a low level. Where the baud rate for main transfer is N [bps], therefore, the baud rate of the sync break field is calculated as follows.
(Baud rate of sync break field) = 9/13 × N

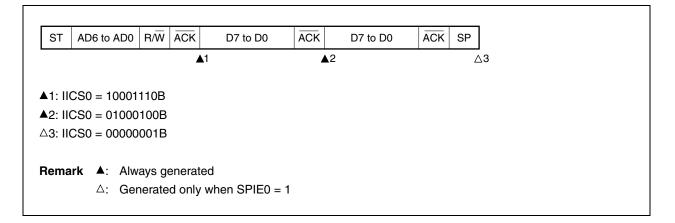
By transmitting data of 00H at this baud rate, a sync break field is generated.

3. INTST3 is output upon completion of transmission. INTST3 is also output when SBF transmission is executed.

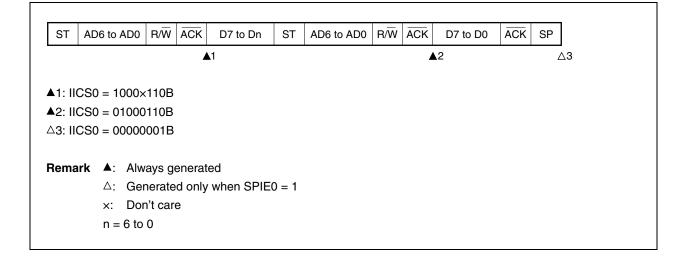

Remark The interval between fields is controlled by software.


Figure 13-96. Flowchart of Address Field Transmission

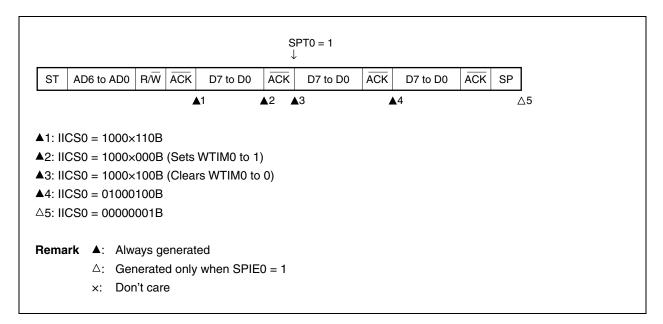
(c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)


(i) When WTIM0 = 0

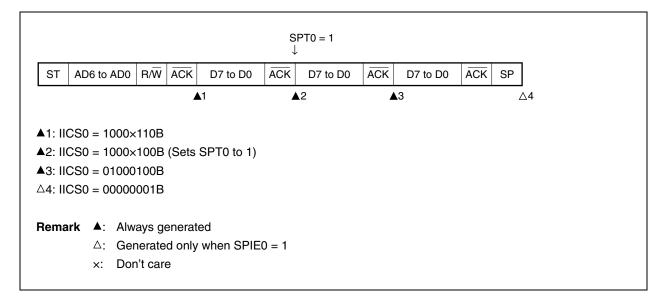
(ii) When WTIM0 = 1

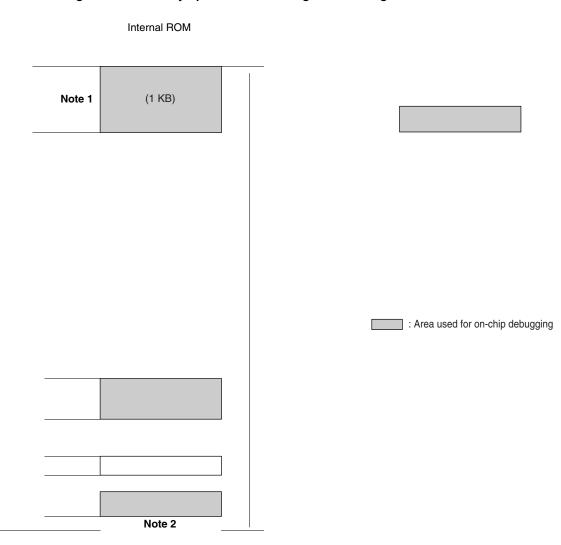


(ii) When WTIM0 = 1



(d) When loss occurs due to restart condition during data transfer


(i) Not extension code (Example: does not match with SVA0)



- (h) When arbitration loss occurs due to low-level data when attempting to generate a stop condition
 - (i) When WTIM0 = 0

(ii) When WTIM0 = 1

Figure 26-2. Memory Spaces Where Debug Monitor Programs Are Allocated

DC Characteristics (1/16)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{REF0} \le \text{V}_{DD}, 1.8 \text{ V} \le \text{AV}_{REF0} \le$	$-1 \leq V DD$,
Vss = EVsso = EVss1 = AVss = 0 V)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	Per pin for P00 to P06, P10 to P17, 4.	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0	mA
high ^{Note 1}		P30, P31, P40 to P47, P50 to P57,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-1.0	mA
		P64 to P67, P70 to P77, P80 to P87, P120, P130, P131, P140 to P145	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-1.0	mA
		P120, P130, P131, P140 to P145 (When duty = 70% ^{Note 2})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-20.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P31, P50 to P57, P64 to P67,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
		P70 to P77, P80 to P87 (When duty = 70% ^{Note 2})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-50.0	mA
		(When duty = $60\%^{\text{Note 2}}$)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-29.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-15.0	mA
	Іон2	Per pin for P20 to P27, P150 to P157	$AV_{\text{REF0}} \leq V_{\text{DD}}$			-0.1	mA
		Per pin for P110, P111	$AV_{\text{REF1}} \leq V_{\text{DD}}$			-0.1	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from EV_{DD0} or EV_{DD1} pin to an output pin.

Specification under conditions where the duty factor is 60% or 70%.
The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 50% and $I_{OH} = -20.0 \text{ mA}$

Total output current of pins = $(-20.0 \times 0.7)/(50 \times 0.01) = -28.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

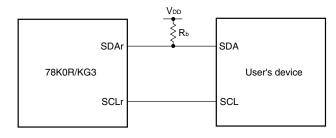
Caution P02 to P04, P43, P45, P142 to P144 do not output high level in N-ch open-drain mode.

DC Characteristics (13/16)

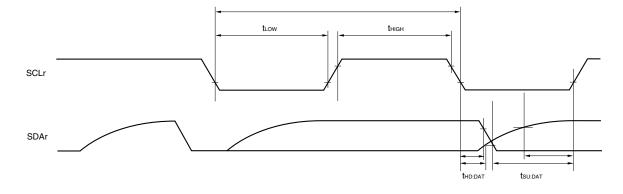
μPD78F1167, 78F1167A, 78F1168, 78F1168A

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{Vdd} = \text{EV}\text{dd} = \text{EV}\text{dd} = \text{EV}\text{dd} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}\text{ReF0} \le \text{Vdd}, 1.8 \text{ V} \le \text{AV}\text{ReF1} \le \text{Vdd}, \text{Vss} = \text{EV}\text{ss0} = \text{EV}\text{ss1} = \text{AV}\text{ss} = 0 \text{ V})$

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1 Note 1	Operating	fsuв = 32.768 kHz ^{Note 2} ,	$V_{DD} = 5.0 V$		6.4	36.0	μA
current		mode	$T_{A} = -40 \text{ to } +70^{\circ}\text{C}$	$V_{DD} = 3.0 V$		6.4	36.0	μA
				V _{DD} = 2.0 V		6.3	32.8	μA
			fsuв = 32.768 kHz ^{Note 2} ,	$V_{DD} = 5.0 \text{ V}$		6.4	51.0	μA
		$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	$V_{DD} = 3.0 V$		6.4	51.0	μA	
				V _{DD} = 2.0 V		6.3	47.8	μA


- **Notes 1.** Total current flowing into V_{DD}, EV_{DD0}, EV_{DD1}, AV_{REF0}, and AV_{REF1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors.
 - **2.** When internal high-speed oscillator and high-speed system clock are stopped. When watchdog timer is stopped.

Remarks 1. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)


2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) Serial interface: Serial array unit (6/18)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Caution Select the normal input buffer and the N-ch open-drain output (VDD tolerance) mode for SDAr and the normal output mode for SCLr by using the PIMg and POMg registers.

Remarks 1. $R_b[\Omega]$: Communication line (SDAr) pull-up resistance,

Cb[F]: Communication line (SCLr, SDAr) load capacitance

- **2.** r: IIC number (r = 10, 20), g: PIM and POM number (g = 0, 14)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of the SMRmn register. m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 02, 10)

(3) Serial interface: Serial array unit (17/18)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 1.4 \; k\Omega \end{aligned} $		400 ^{Note}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note}	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 1.4 \; k\Omega \end{aligned} $	1065		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1065		ns
Hold time when SCLr = "H"	tнівн	$ \begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	445		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	445		ns
Data setup time (reception)	tsu:dat	$ \begin{aligned} &4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ &2.7 \ V \leq V_b \leq 4.0 \ V, \\ &C_b = 100 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	1/fмск + 190		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} & 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 1.4 \; k\Omega \end{aligned} $	0	160	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	160	ns

(h) During communication at different potential (2.5 V, 3 V) (simplified I²C mode)

<R> Note The value must also be fmck/4 or less.

Caution Select the TTL input buffer and the N-ch open-drain output (VDD tolerance) mode for SDAr and the N-ch open-drain output (VDD tolerance) mode for SCLr by using the PIMg and POMg registers.

Remarks 1. $R_b[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance,

Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

- **2.** r: IIC number (r = 10, 20), g: PIM, POM number (g = 0, 14)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of the SMRmn register. m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 02, 10)

4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified I²C mode.

4.0 V \leq V_{\text{DD}} \leq 5.5 V, 2.7 V \leq V_{\text{b}} \leq 4.0 V: VIH = 2.2 V, VIL = 0.8 V

 $2.7~V \leq V_{\text{DD}} \leq 4.0~V,~2.3~V \leq V_{\text{b}} \leq 2.7~V;~V_{\text{IH}} = 2.0~V,~V_{\text{IL}} = 0.5~V$

A.1 Software Package

SP78K0R	Development tools (software) common to the 78K0R microcontrollers are combined in
78K0R Series software package	this package.
	Part number: μ S××××SP78K0R

Remark xxxx in the part number differs depending on the host machine and OS used.

$\mu S \times \times \times S P78 K0 R$

****	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.2 Language Processing Software

RA78K0R Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller. This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF781188). < Precaution when using RA78K0R in PC environment> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows.
	Part number: µS××××RA78K0R
CC78K0R C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file (both sold separately). <precaution cc78k0r="" environment="" in="" pc="" using="" when=""> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows.</precaution>
	Part number: µS××××CC78K0R
DF781188 ^{Note} Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0R, CC78K0R, SM+ for 78K0R, and ID78K0R-QB) (all sold separately). The corresponding OS and host machine differ depending on the tool to be used.
	Part number: µS××××DF781188

Note The DF781188 can be used in common with the RA78K0R, CC78K0R, SM+ for 78K0R, and ID78K0R-QB. Download the DF781188 from the download site for development tools (http://www.necel.com/micro/ods/eng/index.html).