# 



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                                |
|----------------------------|---------------------------------------------------------------------------------------|
| Core Processor             | 78K/0R                                                                                |
| Core Size                  | 16-Bit                                                                                |
| Speed                      | 20MHz                                                                                 |
| Connectivity               | 3-Wire SIO, I <sup>2</sup> C, LINbus, UART/USART                                      |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                               |
| Number of I/O              | 83                                                                                    |
| Program Memory Size        | 384KB (384K x 8)                                                                      |
| Program Memory Type        | FLASH                                                                                 |
| EEPROM Size                | · · · · · · · · · · · · · · · · · · ·                                                 |
| RAM Size                   | 24К х 8                                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                           |
| Data Converters            | A/D 16x10b; D/A 2x8b                                                                  |
| Oscillator Type            | Internal                                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                     |
| Mounting Type              | Surface Mount                                                                         |
| Package / Case             | 100-LQFP                                                                              |
| Supplier Device Package    | · · · · · · · · · · · · · · · · · · ·                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1167agc-ueu-ax |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.7 Block Diagram



#### 3.1.4 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FFF00H to FFFFH (see **Table 3-5** in **3.2.4** Special function registers (SFRs)).

Caution Do not access addresses to which SFRs are not assigned.

#### 3.1.5 Extended special function register (2nd SFR: 2nd Special Function Register) area

On-chip peripheral hardware special function registers (2nd SFRs) are allocated in the area F0000H to F07FFH (see Table 3-6 in 3.2.5 Extended Special function registers (2nd SFRs: 2nd Special Function Registers)).

SFRs other than those in the SFR area (FFF00H to FFFFFH) are allocated to this area. An instruction that accesses the extended SFR area, however, is 1 byte longer than an instruction that accesses the SFR area.

Caution Do not access addresses to which the 2nd SFR is not assigned.

| Address | Special Function Register (SFR) Name                   | Symbol                  | R/W | Manipu       | After Reset  |              |                         |
|---------|--------------------------------------------------------|-------------------------|-----|--------------|--------------|--------------|-------------------------|
|         |                                                        |                         |     | 1-bit        | 8-bit        | 16-bit       |                         |
| FFF90H  | Sub-count register                                     | RSUBC                   | R   | -            | -            | $\checkmark$ | 0000H                   |
| FFF91H  |                                                        |                         |     |              |              |              |                         |
| FFF92H  | Second count register                                  | SEC                     | R/W | -            | $\checkmark$ | -            | 00H                     |
| FFF93H  | Minute count register                                  | MIN                     | R/W | I            | $\checkmark$ | -            | 00H                     |
| FFF94H  | Hour count register                                    | HOUR                    | R/W | -            | $\checkmark$ | -            | 12H <sup>Note 1</sup>   |
| FFF95H  | Week count register                                    | WEEK                    | R/W | I            | $\checkmark$ | -            | 00H                     |
| FFF96H  | Day count register                                     | DAY                     | R/W | Ι            | $\checkmark$ | -            | 01H                     |
| FFF97H  | Month count register                                   | MONTH                   | R/W | 1            | $\checkmark$ | -            | 01H                     |
| FFF98H  | Year count register                                    | YEAR                    | R/W | I            | $\checkmark$ | -            | 00H                     |
| FFF99H  | Watch error correction register                        | SUBCUD                  | R/W | I            | $\checkmark$ | -            | 00H                     |
| FFF9AH  | Alarm minute register                                  | ALARMWM                 | R/W | -            | $\checkmark$ | -            | 00H                     |
| FFF9BH  | Alarm hour register                                    | ALARMWH                 | R/W | -            | $\checkmark$ | -            | 12H                     |
| FFF9CH  | Alarm week register                                    | ALARMWW                 | R/W | -            | $\checkmark$ | -            | 00H                     |
| FFF9DH  | Real-time counter control register 0                   | RTCC0                   | R/W | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFF9EH  | Real-time counter control register 1                   | RTCC1                   | R/W | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFF9FH  | Real-time counter control register 2                   | RTCC2                   | R/W | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFFA0H  | Clock operation mode control register                  | СМС                     | R/W | -            | $\checkmark$ | -            | 00H                     |
| FFFA1H  | Clock operation status control register                | CSC                     | R/W | $\checkmark$ | $\checkmark$ | -            | COH                     |
| FFFA2H  | Oscillation stabilization time counter status register | OSTC                    | R   | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFFA3H  | Oscillation stabilization time select register         | OSTS                    | R/W | 1            | $\checkmark$ | -            | 07H                     |
| FFFA4H  | System clock control register                          | СКС                     | R/W | $\checkmark$ | $\checkmark$ | -            | 09H                     |
| FFFA5H  | Clock output select register 0                         | CKS0                    | R/W | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFFA6H  | Clock output select register 1                         | CKS1                    | R/W | $\checkmark$ | $\checkmark$ | -            | 00H                     |
| FFFA8H  | Reset control flag register                            | RESF                    | R   | -            | $\checkmark$ | -            | 00H <sup>Note 2</sup>   |
| FFFA9H  | Low-voltage detection register                         | LVIM                    | R/W | $\checkmark$ | $\checkmark$ | -            | 00H <sup>Note 3</sup>   |
| FFFAAH  | Low-voltage detection level select register            | LVIS                    | R/W | $\checkmark$ | $\checkmark$ | -            | 0EH <sup>Note 4</sup>   |
| FFFABH  | Watchdog timer enable register                         | WDTE                    | R/W | -            | $\checkmark$ | -            | 1A/9A <sup>Note 5</sup> |
| FFFACH  | _                                                      | TTBLH <sup>Note 6</sup> | -   | -            | -            | -            | Undefined               |
| FFFADH  |                                                        |                         |     |              |              |              |                         |
| FFFAEH  | _                                                      |                         | -   | -            | -            | -            | Undefined               |
| FFFAFH  |                                                        |                         |     |              |              |              |                         |

#### Table 3-5. SFR List (3/5)

Notes 1. The value of this register is 00H if the AMPM bit (bit 3 of the RTCC0 register) is set to 1 after reset.

- 2. The reset value of RESF varies depending on the reset source.
- 3. The reset value of LVIM varies depending on the reset source and the setting of the option byte.
- 4. The reset value of LVIS varies depending on the reset source.
- 5. The reset value of WDTE is determined by the setting of the option byte.
- 6. Do not directly operate this SFR, because it cannot be used by the user.

| Symbol | 7    | 6          | 5          | 4    | 3    | 2          | 1    | 0    | Address       | After reset        | R/W                 |
|--------|------|------------|------------|------|------|------------|------|------|---------------|--------------------|---------------------|
| P0     | 0    | P06        | P05        | P04  | P03  | P02        | P01  | P00  | FFF00H        | 00H (output latch) | R/W                 |
| D1     | D17  | <b>P16</b> | <b>P15</b> | D14  | D12  | <b>P10</b> | D11  | P10  |               | 00H (output latch) |                     |
| FI     | F17  | FIO        | FID        | F14  | FIS  | F12        | FII  | FIU  | FFFVIR        |                    | U/ M                |
| P2     | P27  | P26        | P25        | P24  | P23  | P22        | P21  | P20  | FFF02H        | 00H (output latch) | R/W                 |
|        | -    | 1          | I          | r    | r    | r          | ī    | 1    |               |                    |                     |
| P3     | 0    | 0          | 0          | 0    | 0    | 0          | P31  | P30  | FFF03H        | 00H (output latch) | R/W                 |
|        | _    | _          | _          | _    | _    | _          | _    | _    | I             |                    |                     |
| P4     | P47  | P46        | P45        | P44  | P43  | P42        | P41  | P40  | FFF04H        | 00H (output latch) | R/W                 |
| P5     | P57  | P56        | P55        | P54  | P53  | P52        | P51  | P50  | FFF05H        | 00H (output latch) | R/W                 |
|        |      |            |            |      | l    | l          |      |      |               |                    |                     |
| P6     | P67  | P66        | P65        | P64  | P63  | P62        | P61  | P60  | FFF06H        | 00H (output latch) | R/W                 |
|        | _    | _          | _          | _    | _    | _          | _    | _    | I             |                    |                     |
| P7     | P77  | P76        | P75        | P74  | P73  | P72        | P71  | P70  | FFF07H        | 00H (output latch) | R/W                 |
| P8     | P87  | P86        | P85        | P84  | P83  | P82        | P81  | P80  | FFF08H        | 00H (output latch) | R/W                 |
|        |      |            |            |      |      |            |      |      |               |                    |                     |
| P11    | 0    | 0          | 0          | 0    | 0    | 0          | P111 | P110 | <b>FFF0BH</b> | 00H (output latch) | R/W                 |
| _      |      |            |            | _    | _    | _          | _    | _    | I             |                    |                     |
| P12    | 0    | 0          | 0          | P124 | P123 | P122       | P121 | P120 | FFF0CH        | Undefined          | R/W <sup>NOTE</sup> |
| P13    | 0    | 0          | 0          | 0    | 0    | 0          | P131 | P130 | FFF0DH        | 00H (output latch) | R/W                 |
|        |      |            |            |      |      |            |      |      |               |                    |                     |
| P14    | 0    | 0          | P145       | P144 | P143 | P142       | P141 | P140 | FFF0EH        | 00H (output latch) | R/W                 |
|        |      |            |            |      |      |            |      |      | 1             |                    |                     |
| P15    | P157 | P156       | P155       | P154 | P153 | P152       | P151 | P150 | FFF0FH        | 00H (output latch) | R/W                 |
|        |      |            |            |      |      |            |      |      |               |                    |                     |

# Figure 4-41. Format of Port Register

| Pmn | m = 0 to 8, 11 to 15; n = 0 to 7     |                                 |  |  |  |  |  |  |  |  |
|-----|--------------------------------------|---------------------------------|--|--|--|--|--|--|--|--|
|     | Output data control (in output mode) | Input data read (in input mode) |  |  |  |  |  |  |  |  |
| 0   | Output 0                             | Input low level                 |  |  |  |  |  |  |  |  |
| 1   | Output 1                             | Input high level                |  |  |  |  |  |  |  |  |



# 4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register and output latch as shown in Table 4-6.

| Pin Name | Alternate Function | PM××   | P×× |   |
|----------|--------------------|--------|-----|---|
|          | Function Name      | I/O    | 1   |   |
| P00      | ТІОО               | Input  | 1   | × |
| P01      | ТО00               | Output | 0   | 0 |
| P02      | SO10               | Output | 0   | 1 |
|          | TxD1               | Output | 0   | 1 |
| P03      | SI10               | Input  | 1   | × |
|          | RxD1               | Input  | 1   | × |
|          | SDA10              | I/O    | 0   | 1 |
| P04      | SCK10              | Input  | 1   | × |
| P04      |                    | Output | 0   | 1 |
|          | SCL10              | I/O    | 0   | 1 |
| P05      | CLKOUT             | Output | 0   | 0 |
| P06      | WAIT               | Input  | 1   | × |
| P10      | SCK00              | Input  | 1   | × |
|          |                    | Output | 0   | 1 |
|          | EX24               | Output | 0   | 0 |
| P11      | SI00               | Input  | 1   | × |
|          | RxD0               | Input  | 1   | × |
|          | EX25               | Output | 0   | 0 |
| P12      | SO00               | Output | 0   | 1 |
|          | TxD0               | Output | 0   | 1 |
|          | EX26               | Output | 0   | 0 |
| P13      | TxD3               | Output | 0   | 1 |
|          | EX27               | Output | 0   | 0 |
| P14      | RxD3               | Input  | 1   | × |
|          | EX28               | Output | 0   | 0 |
| P15      | RTCDIV             | Output | 0   | 0 |
|          | RTCCL              | Output | 0   | 0 |
|          | EX29               | Output | 0   | 0 |
| P16      | TI01               | Input  | 1   | × |
|          | TO01               | Output | 0   | 0 |
|          | INTP5              | Input  | 1   | × |
| P16      | EX30               | Output | 0   | 0 |

| Table 4-6. | Settings of | Port Mode R | egister and Out | tout Latch When | Using Alter | nate Function (1/3) |
|------------|-------------|-------------|-----------------|-----------------|-------------|---------------------|
|            | ooungo oi   |             | ogiotoi ana oa  |                 |             |                     |

Remark ×:

don't care

PM××: Port mode register

Port output latch P××:

#### 4.6 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit. Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

- <Example> When P10 is an output port, P11 to P17 are input ports (all pin statuses are high level), and the port latch value of port 1 is 00H, if the output of output port P10 is changed from low level to high level via a 1-bit manipulation instruction, the output latch value of port 1 is FFH.
- Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.

A 1-bit manipulation instruction is executed in the following order in the 78K0R/KG3.

- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the output latch value (0) of P10, which is an output port, is read, while the pin statuses of P11 to P17, which are input ports, are read. If the pin statuses of P11 to P17 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.



#### Figure 4-46. Bit Manipulation Instruction (P10)

### Figure 6-7. Format of Peripheral Enable Register (2/2)

| SAU1EN | Control of serial array unit 1 input clock                                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | <ul><li>Stops input clock supply.</li><li>SFR used by the serial array unit 1 cannot be written.</li><li>The serial array unit 1 is in the reset status.</li></ul> |
| 1      | Supplies input clock. <ul> <li>SFR used by the serial array unit 1 can be read and written.</li> </ul>                                                             |

| SAU0EN | Control of serial array unit 0 input clock                                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | <ul><li>Stops input clock supply.</li><li>SFR used by the serial array unit 0 cannot be written.</li><li>The serial array unit 0 is in the reset status.</li></ul> |
| 1      | <ul><li>Supplies input clock.</li><li>SFR used by the serial array unit 0 can be read and written.</li></ul>                                                       |

| TAU0EN | Control of timer array unit input clock                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | <ul><li>Stops input clock supply.</li><li>SFR used by the timer array unit cannot be written.</li><li>The timer array unit is in the reset status.</li></ul> |
| 1      | <ul><li>Supplies input clock.</li><li>SFR used by the timer array unit can be read and written.</li></ul>                                                    |

| EXBEN | Control of external bus interface input clock                                                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>Stops input clock supply.</li><li>SFR used by the external bus interface cannot be written.</li><li>The external bus interface is in the reset status.</li></ul> |
| 1     | <ul><li>Supplies input clock.</li><li>SFR used by the external bus interface can be read and written.</li></ul>                                                          |

Caution Be sure to clear bit 1 of the PER0 register and bits 1 to 7 of the PER1 register to 0.

#### 7.7.3 Operation as frequency divider (channel 0 only)

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result from TO00.

The divided clock frequency output from TO00 can be calculated by the following expression.

- When rising edge/falling edge is selected:
- Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1) × 2}
- When both edges are selected:
- Divided clock frequency  $\cong$  Input clock frequency/(Set value of TDR00 + 1)

TCR00 operates as a down counter in the interval timer mode.

After the channel start trigger bit (TS00) is set to 1, TCR00 loads the value of TDR00 when the TI00 valid edge is detected. If MD000 of TMR00 = 0 at this time, INTTM00 is not output and TO00 is not toggled. If MD000 of TMR00 = 1, INTTM00 is output and TO00 is toggled.

After that, TCR00 counts down at the valid edge of TI00. When TCR00 = 0000H, it toggles TO00. At the same time, TCR00 loads the value of TDR00 again, and continues counting.

If detection of both the edges of TI00 is selected, the duty factor error of the input clock affects the divided clock period of the TO00 output.

The period of the TO00 output clock includes a sampling error of one period of the operation clock.

Clock period of TO00 output = Ideal TO00 output clock period  $\pm$  Operation clock period (error)

TDR00 can be rewritten at any time. The new value of TDR00 becomes valid during the next count period.





#### (2) Operation procedure



Figure 13-80. Initial Setting Procedure for UART Reception

Caution After setting the PER0 register to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.





(ii) When WTIM0 = 1

|                 |                     |         |          |              |         |          |     |     | 1  |
|-----------------|---------------------|---------|----------|--------------|---------|----------|-----|-----|----|
| ST              | AD6 to AD0          | R/W     | ACK      | D7 to D0     | ACK     | D7 to D0 | ACK | SP  |    |
|                 |                     |         | ▲1       | l            | <b></b> | 2        | 4   | 3 / | ∆4 |
|                 |                     |         |          |              |         |          |     |     |    |
| <b>▲</b> 1: II0 | CS0 = 0101          | ×110B   |          |              |         |          |     |     |    |
| <b>▲</b> 2: II0 | CS0 = 0001          | ×100B   |          |              |         |          |     |     |    |
| <b>▲</b> 3: II0 | CS0 = 0001          | ××00B   |          |              |         |          |     |     |    |
| ∆4: II(         | CS0 = 0000          | 0001B   |          |              |         |          |     |     |    |
|                 |                     |         |          |              |         |          |     |     |    |
| Rema            | i <b>rk ≜</b> : Alv | vays g  | enerate  | d            |         |          |     |     |    |
|                 | ∆: Ge               | nerate  | d only v | when SPIE0 = | : 1     |          |     |     |    |
|                 | x: Do               | n't car | е        |              |         |          |     |     |    |
|                 |                     |         |          |              |         |          |     |     |    |

### (b) When arbitration loss occurs during transmission of extension code

(i) When WTIM0 = 0



#### 17.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt. Multiple interrupt servicing does not occur unless the interrupt request acknowledgment enabled state is selected (IE = 1). When an interrupt request is acknowledged, interrupt request acknowledgment becomes disabled (IE = 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during interrupt servicing to enable interrupt acknowledgment.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 17-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 17-10 shows multiple interrupt servicing examples.

| Multiple Interrupt Request |                               |        | Software                      |        |                               |        |                               |        |                      |   |
|----------------------------|-------------------------------|--------|-------------------------------|--------|-------------------------------|--------|-------------------------------|--------|----------------------|---|
|                            | Priority Level 0<br>(PR = 00) |        | Priority Level 1<br>(PR = 01) |        | Priority Level 2<br>(PR = 10) |        | Priority Level 3<br>(PR = 11) |        | Interrupt<br>Request |   |
| Interrupt Being Servic     | IE = 1                        | IE = 0 |                      |   |
| Maskable interrupt         | ISP1 = 0<br>ISP0 = 0          | 0      | ×                             | ×      | ×                             | ×      | ×                             | ×      | ×                    | 0 |
|                            | ISP1 = 0<br>ISP0 = 1          | 0      | ×                             | 0      | ×                             | ×      | ×                             | ×      | ×                    | 0 |
|                            | ISP1 = 1<br>ISP0 = 0          | 0      | ×                             | 0      | ×                             | 0      | ×                             | ×      | ×                    | 0 |
|                            | ISP1 = 1<br>ISP0 = 1          | 0      | ×                             | 0      | ×                             | 0      | ×                             | 0      | ×                    | 0 |
| Software interrupt         |                               | 0      | ×                             | 0      | ×                             | 0      | ×                             | 0      | ×                    | 0 |

 Table 17-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing

 During Interrupt Servicing

Remarks 1. O: Multiple interrupt servicing enabled

- 2. ×: Multiple interrupt servicing disabled
- 3. ISP0, ISP1, and IE are flags contained in the PSW.
  - ISP1 = 0, ISP0 = 0: An interrupt of level 1 or level 0 is being serviced.
  - ISP1 = 0, ISP0 = 1: An interrupt of level 2 is being serviced.
  - ISP1 = 1, ISP0 = 0: An interrupt of level 3 is being serviced.
  - ISP1 = 1, ISP0 = 1: Wait for An interrupt acknowledgment.
  - IE = 0: Interrupt request acknowledgment is disabled.
  - IE = 1: Interrupt request acknowledgment is enabled.
- 4. PR is a flag contained in PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H.
  - PR = 00: Specify level 0 with  $\times$  PR1 $\times$  = 0,  $\times$  PR0 $\times$  = 0 (higher priority level)
  - PR = 01: Specify level 1 with  $\times PR1 \times = 0$ ,  $\times PR0 \times = 1$
  - PR = 10: Specify level 2 with  $\times PR1 \times = 1$ ,  $\times PR0 \times = 0$
  - PR = 11: Specify level 3 with  $\times$  PR1 $\times$  = 1,  $\times$  PR0 $\times$  = 1 (lower priority level)

### 21.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 21-1.





#### 21.3 Operation of Power-on-Clear Circuit

An internal reset signal is generated on power application. When the supply voltage (V<sub>DD</sub>) exceeds the detection voltage (V<sub>POC</sub> = 1.59 V ±0.09 V), the reset status is released.

# Caution If the low-voltage detector (LVI) is set to ON by an option byte by default, the reset signal is not released until the supply voltage (V<sub>DD</sub>) exceeds 2.07 V ±0.2 V.

• The supply voltage (V<sub>DD</sub>) and detection voltage (V<sub>POC</sub> = 1.59 V ±0.09 V) are compared. When V<sub>DD</sub> < V<sub>POC</sub>, the internal reset signal is generated.

The timing of generation of the internal reset signal by the power-on-clear circuit and low-voltage detector is shown below.



Figure 25-13. Example of Executing Boot Swapping

Standard Products

#### (4) X1 oscillation: Crystal resonator (AMPH = 1, RMC = 00H, $T_A = -40$ to +85°C)

| Manufacturer | Part Number          | SMD/<br>Lead | Frequency<br>(MHz) | Recommended Circuit<br>Constants |         | Oscillation Voltage Range |          |
|--------------|----------------------|--------------|--------------------|----------------------------------|---------|---------------------------|----------|
|              |                      |              |                    | C1 (pF)                          | C2 (pF) | MIN. (V)                  | MAX. (V) |
| KYOCERA      | HC49SFWB16000D0PPTZZ | Lead         | 16.0               | 10                               | 10      | 1.8                       | 5.5      |
| KINSEKI      | CX49GFWB16000D0PPTZZ |              |                    |                                  |         |                           |          |
| Co., Ltd.    | CX1255GB16000D0PPTZZ | SMD          |                    |                                  |         |                           |          |
|              | CX8045GB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX5032GB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX5032SB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX3225GB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX3225SB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX2520SB16000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | HC49SFWB20000D0PPTZZ | Lead         | 20.0               | 10                               | 10      | 2.3                       |          |
|              | CX49GFWB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX1255GB20000D0PPTZZ | SMD          |                    |                                  |         |                           |          |
|              | CX8045GB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX5032GB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX5032SB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX3225GB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX3225SB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX2520SB20000D0PPTZZ |              |                    |                                  |         |                           |          |
|              | CX2016SB20000D0PPTZZ |              |                    |                                  |         |                           |          |

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

When doing so, check the conditions for using the AMPH bit, RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KG3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

#### (2) X1 oscillation: Crystal resonator (AMPH = 0, RMC = 00H, $T_A = -40$ to +85°C)

| Manufacturer | Part Number          | SMD/<br>Lead | Frequency<br>(MHz) | Recommended Circuit<br>Constants |         | Oscillation V | oltage Range |
|--------------|----------------------|--------------|--------------------|----------------------------------|---------|---------------|--------------|
|              |                      |              |                    | C1 (pF)                          | C2 (pF) | MIN. (V)      | MAX. (V)     |
| KYOCERA      | HC49SFWB04194D0PPTZZ | Lead         | 4.194              | 10                               | 10      | 1.8           | 5.5          |
| KINSEKI      | CX49GFWB04194D0PPTZZ |              |                    |                                  |         |               |              |
| Co., Ltd.    | CX1255GB04194D0PPTZZ | SMD          |                    |                                  |         |               |              |
|              | HC49SFWB05000D0PPTZZ | Lead         | 5.0                | 10                               | 10      | 1.8           |              |
|              | CX49GFWB05000D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX1255GB05000D0PPTZZ | SMD          |                    |                                  |         |               |              |
|              | CX8045GB05000D0PPTZZ |              |                    |                                  |         |               |              |
|              | HC49SFWB08380D0PPTZZ | Lead         | 8.38               | 10                               | 10      | 1.8           |              |
|              | CX49GFWB08380D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX1255GB08380D0PPTZZ | SMD          |                    |                                  |         |               |              |
|              | CX8045GB08380D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX5032GB08380D0PPTZZ |              |                    |                                  |         |               |              |
|              | HC49SFWB10000D0PPTZZ | Lead         | 10.0               | 10                               | 10      | 1.8           | 1            |
|              | CX49GFWB10000D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX1255GB10000D0PPTZZ | SMD          |                    |                                  |         |               |              |
|              | CX8045GB10000D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX5032GB10000D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX5032SB10000D0PPTZZ |              |                    |                                  |         |               |              |
|              | CX3225GB10000D0PPTZZ |              |                    |                                  |         |               |              |

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

When doing so, check the conditions for using the AMPH bit, RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KG3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

### DC Characteristics (13/16)

## μPD78F1167A(A), 78F1168A(A)

(TA = -40 to +85°C, 1.8 V  $\leq$  Vdd = EVdd0 = EVdd1  $\leq$  5.5 V, 1.8 V  $\leq$  AVREF0  $\leq$  Vdd, 1.8 V  $\leq$  AVREF1  $\leq$  Vdd, Vss = EVss0 = EVss1 = AVss = 0 V)

| Parameter | Symbol                | Conditions            |                                                                                    |                         |  | TYP. | MAX. | Unit |
|-----------|-----------------------|-----------------------|------------------------------------------------------------------------------------|-------------------------|--|------|------|------|
| Supply    | DD1 <sup>Note 1</sup> | Note 1 Operating mode | $f_{SUB} = 32.768 \text{ kHz}^{Note 2},$<br>$T_A = -40 \text{ to } +70 \text{ °C}$ | V <sub>DD</sub> = 5.0 V |  | 6.4  | 36.0 | μA   |
| current   |                       |                       |                                                                                    | V <sub>DD</sub> = 3.0 V |  | 6.4  | 36.0 | μA   |
|           |                       |                       |                                                                                    | $V_{DD} = 2.0 V$        |  | 6.3  | 32.8 | μA   |
|           |                       |                       | $f_{SUB} = 32.768 \text{ kHz}^{Note 2},$<br>TA = -40 to +85°C                      | $V_{DD} = 5.0 V$        |  | 6.4  | 51.0 | μA   |
|           |                       |                       |                                                                                    | $V_{DD} = 3.0 V$        |  | 6.4  | 51.0 | μA   |
|           |                       |                       |                                                                                    | $V_{DD} = 2.0 V$        |  | 6.3  | 47.8 | μA   |

**Notes 1.** Total current flowing into V<sub>DD</sub>, EV<sub>DD0</sub>, EV<sub>DD1</sub>, AV<sub>REF0</sub>, and AV<sub>REF1</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors.

**2.** When internal high-speed oscillator and high-speed system clock are stopped. When watchdog timer is stopped.

Remarks 1. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

**2.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ 

# (3) Serial interface: Serial array unit (12/18) (T<sub>A</sub> = -40 to +85°C, 2.7 V ≤ V<sub>DD</sub> = EV<sub>DD0</sub> = EV<sub>DD1</sub> ≤ 5.5 V, V<sub>SS</sub> = EV<sub>SS0</sub> = EV<sub>SS1</sub> = AV<sub>SS</sub> = 0 V)

# (f) During communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

| Parameter                                             | Symbol | Conditions                                                                                                                                                                                   | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| SIp setup time<br>(to SCKp↓) <sup>№te</sup>           | tsik1  | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$                  | 70   |      |      | ns   |
|                                                       |        | $\label{eq:VDD} \begin{split} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{split}$         | 100  |      |      | ns   |
| SIp hold time<br>(from SCKp↓) <sup>№te</sup>          | tksi1  | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$                  | 30   |      |      | ns   |
|                                                       |        | $\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$       | 30   |      |      | ns   |
| Delay time from SCKp↑ to<br>SOp output <sup>№te</sup> | tkso1  | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$                  |      |      | 40   | ns   |
|                                                       |        | $\label{eq:VD} \begin{array}{ c c c } 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$ |      |      | 40   | ns   |

**Note** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

#### CSI mode connection diagram (during communication at different potential)



# Caution Select the TTL input buffer for SIp and the N-ch open-drain output (VDD tolerance) mode for SOp and SCKp by using the PIMg and POMg registers.

- **Remarks 1.** p: CSI number (p = 01, 10, 20), g: PIM and POM number (g = 0, 4, 14)
  - **2.** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2)
  - R<sub>b</sub>[Ω]: Communication line (SCKp, SOp) pull-up resistance, C<sub>b</sub>[F]: Communication line (SCKp, SOp) load capacitance, V<sub>b</sub>[V]: Communication line voltage
  - **4.** V<sub>IH</sub> and V<sub>IL</sub> below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
    - $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V;~V\text{ih} = 2.2~V,~V\text{il} = 0.8~V$

$$2.7~V \leq V_{\text{DD}} \leq 4.0~V,~2.3~V \leq V_{\text{b}} \leq 2.7~V;~V\text{ih}$$
 = 2.0 V, Vil = 0.5 V

**5.** CSI00 cannot communicate at different potential. Use CSI01, CSI10, and CSI20 for communication at different potential.

# (3) Serial interface: Serial array unit (18/18)

#### Simplified I<sup>2</sup>C mode connection diagram (during communication at different potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at different potential)



# Caution Select the TTL input buffer and the N-ch open-drain output (VDD tolerance) mode for SDAr and the N-ch open-drain output (VDD tolerance) mode for SCLr by using the PIMg and POMg registers.

Remarks 1. R<sub>b</sub>[Ω]: Communication line (SDAr, SCLr) pull-up resistance, V<sub>b</sub>[V]: Communication line voltage
2. r: IIC number (r = 10, 20), g: PIM and POM number (g = 0, 14)

|       |       |           |                    |                                                                                          | (23/3 | 35) |
|-------|-------|-----------|--------------------|------------------------------------------------------------------------------------------|-------|-----|
|       | uo    | Function  | Details of         | Cautions                                                                                 | Pag   | e   |
| pter  | icati |           | Function           |                                                                                          |       |     |
| Cha   | ssif  |           |                    |                                                                                          |       |     |
| Ŭ     | Cla   |           |                    |                                                                                          |       |     |
| 17    | ĥ     | Interrupt | PR00L, PR00H,      | Be sure to set bits 1 to 7 of PR02H and PR12H to 1.                                      | p.644 |     |
| ter . | ŭ     | functions | PR01L, PR01H,      |                                                                                          |       | _   |
| nap   |       |           | PR02L, PR02H,      |                                                                                          |       |     |
| ō     |       |           | PR10L, PR10H,      |                                                                                          |       |     |
|       |       |           | PR11L, PR11H,      |                                                                                          |       |     |
|       |       |           | PR12L, PR12H:      |                                                                                          |       |     |
|       |       |           | Priority           |                                                                                          |       |     |
|       |       |           | specification flag |                                                                                          |       |     |
|       |       |           | registers          |                                                                                          |       |     |
|       |       |           | EGP0, EGP1:        | Select the port mode by clearing EGPn and EGNn to 0 because an edge may be               | p.646 |     |
|       |       |           | External           | detected when the external interrupt function is switched to the port function.          |       |     |
|       |       |           | interrupt rising   |                                                                                          |       |     |
|       |       |           | edge enable        |                                                                                          |       |     |
|       |       |           | registers, EGN0,   |                                                                                          |       |     |
|       |       |           | EGN1: External     |                                                                                          |       |     |
|       |       |           | Interrupt failing  |                                                                                          |       |     |
|       |       |           | registers          |                                                                                          |       |     |
|       |       |           | Software           | Do not use the RETL instruction for restoring from the software interrupt                | n 650 |     |
|       |       |           | interrupt request  |                                                                                          | p.000 |     |
|       |       |           | acknowledgment     |                                                                                          |       |     |
|       |       |           | J J                |                                                                                          |       |     |
|       |       |           |                    |                                                                                          | 054   |     |
|       |       |           | BRK instruction    | The BHK instruction is not one of the above-listed interrupt request hold instructions.  | p.654 | П   |
|       |       |           |                    | However, the soliware interrupt activated by executing the BRK instruction causes        |       |     |
|       |       |           |                    | generated during execution of the BBK instruction the interrupt request is not           |       |     |
|       |       |           |                    | acknowledged.                                                                            |       |     |
| 18    | oft   | Kev       | KRM: Key return    | If any of the KRM0 to KRM7 bits used is set to 1, set bits 0 to 7 (PU70 to PU77) of      | p.656 |     |
| ter 1 | ŏ     | interrupt | mode register      | the corresponding pull-up resistor register 7 (PU7) to 1.                                |       |     |
| hap   |       | function  | -                  |                                                                                          |       |     |
| ō     |       |           |                    |                                                                                          |       |     |
|       |       |           |                    |                                                                                          |       | -   |
|       |       |           |                    | An interrupt will be generated if the target bit of the KRW register is set while a low  | p.656 | Ш   |
|       |       |           |                    | KRM register after disabling interrupt servicing by using the interrupt mask flag        |       |     |
|       |       |           |                    | Afterward, clear the interrupt request flag and enable interrupt servicing after waiting |       |     |
|       |       |           |                    | for the key interrupt input low-level width (250 ns or more).                            |       |     |
|       |       |           |                    | The bits not used in the key interrupt mode can be used as normal ports.                 | p.656 |     |
| 19    | oft   | Standby   | -                  | The STOP mode can be used only when the CPU is operating on the main system              | p.657 |     |
| ter   | Ň     | function  |                    | clock. The STOP mode cannot be set while the CPU operates with the subsystem             | -     |     |
| hap   |       |           |                    | clock. The HALT mode can be used when the CPU is operating on either the main            |       |     |
| 0     |       |           |                    | system clock or the subsystem clock.                                                     |       |     |
|       |       |           |                    | When shifting to the STOP mode, be sure to stop the peripheral hardware operation        | p.657 |     |
|       |       |           |                    | operating with main system clock before executing STOP instruction.                      |       |     |
|       |       |           |                    | The following sequence is recommended for operating current reduction of the A/D         | p.657 |     |
| 1     |       |           |                    | converter when the standby function is used: First clear bit 7 (ADCS) and bit 0          |       |     |
|       |       |           |                    | (AUCE) or the A/D converter mode register (ADM) to 0 to stop the A/D conversion          |       |     |
| 1     |       | 1         | 1                  | I Operation, and then execute the SIOP instruction.                                      | 1     |     |

| Page                                     | Description                                                                                                                                                        | Classification |  |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| CHAPTER 16 DMA CONTROLLER (continuation) |                                                                                                                                                                    |                |  |  |  |  |  |
| p.627                                    | Addition of Note to Figure 16-12. Example of Setting for Holding DMA Transfer Pending by DWAITn                                                                    | (c)            |  |  |  |  |  |
| pp.628, 629                              | Change of 16.5.7 Forced termination by software                                                                                                                    | (c)            |  |  |  |  |  |
| p.630                                    | Change of (1) Priority of DMA in 16.6 Cautions on Using DMA Controller                                                                                             | (c)            |  |  |  |  |  |
| p.631                                    | Change of (2) DMA response time in 16.6 Cautions on Using DMA Controller                                                                                           | (c)            |  |  |  |  |  |
| p.632                                    | Change of description in (4) DMA pending instruction in 16.6 Cautions on Using DMA<br>Controller                                                                   | (c)            |  |  |  |  |  |
| CHAPTER 17                               | INTERRUPT FUNCTIONS                                                                                                                                                |                |  |  |  |  |  |
| p.636                                    | Change of (B) External maskable interrupt (INTPn) in Figure 17-1. Basic Configuration of<br>Interrupt Function                                                     | (c)            |  |  |  |  |  |
| p.637                                    | Addition of (C) External maskable interrupt (INTKR) to Figure 17-1. Basic Configuration of Interrupt Function                                                      | (c)            |  |  |  |  |  |
| p.654                                    | Addition of instruction to 17.4.4 Interrupt request hold                                                                                                           | (c)            |  |  |  |  |  |
| CHAPTER 18                               | KEY INTERRUPT FUNCTION                                                                                                                                             |                |  |  |  |  |  |
| p.655                                    | Change of Table 18-2. Configuration of Key Interrupt                                                                                                               | (c)            |  |  |  |  |  |
| p.656                                    | Addition of 18.3 (2) Port mode register 7 (PM7)                                                                                                                    | (c)            |  |  |  |  |  |
| CHAPTER 27                               | BCD CORRECTION CIRCUIT                                                                                                                                             |                |  |  |  |  |  |
| p.740                                    | Change of 27.3 BCD Correction Circuit Operation                                                                                                                    | (a)            |  |  |  |  |  |
| CHAPTER 28                               | INSTRUCTION SET                                                                                                                                                    |                |  |  |  |  |  |
| p.745                                    | Change of description in 28.1.4 PREFIX instruction                                                                                                                 | (c)            |  |  |  |  |  |
| p.761                                    | Change of Clocks of BT Mnemonic in Table 28-5. Operation List (16/17)                                                                                              | (c)            |  |  |  |  |  |
| p.762                                    | Change of Clocks of BF Mnemonic in Table 28-5. Operation List (17/17)                                                                                              | (c)            |  |  |  |  |  |
| CHAPTER 29                               | ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS)                                                                                                                      |                |  |  |  |  |  |
| p.765                                    | Deletion of Remark in X1 Oscillator Characteristics                                                                                                                | (a)            |  |  |  |  |  |
| p.767                                    | Deletion of Remark in XT1 Oscillator Characteristics                                                                                                               | (a)            |  |  |  |  |  |
| pp.768, 770,<br>772                      | Change of Caution in Recommended Oscillator Constants                                                                                                              | (c)            |  |  |  |  |  |
| pp.769, 771                              | Addition of KYOCERA KINSEKI Co., Ltd. to Recommended Oscillator Constants                                                                                          | (c)            |  |  |  |  |  |
| pp.780 to 788                            | Addition of Remark to Supply current in DC Characteristics                                                                                                         | (c)            |  |  |  |  |  |
| p.801                                    | Change of (b) During communication at same potential (CSI mode) (master mode, SCKp<br>internal clock output) in Serial interface: Serial array unit                | (b)            |  |  |  |  |  |
| p.802                                    | Change of (c) During communication at same potential (CSI mode) (slave mode, SCKp<br>external clock input) in Serial interface: Serial array unit                  | (b)            |  |  |  |  |  |
| p.804                                    | Addition of Note to (d) During communication at same potential (simplified I <sup>2</sup> C mode) in Serial interface: Serial array unit                           | (c)            |  |  |  |  |  |
| pp.810, 811                              | Change of (f) During communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output) in Serial interface: Serial array unit | (b)            |  |  |  |  |  |
| p.813                                    | Change of (g) During communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input) in Serial interface: Serial array unit   | (b)            |  |  |  |  |  |
| p.816                                    | Addition of Note to (h) During communication at different potential (2.5 V, 3 V) (simplified I <sup>2</sup> C mode) in Serial interface: Serial array unit         | (b)            |  |  |  |  |  |

**Remark** "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents