

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	120-VFBGA
Supplier Device Package	120-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg995f1024-bga120t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

wake-up time, makes it attractive to remain in low energy modes for long periods and thus saving energy consumption.

Tip

Throughout this document, the first figure in every module description contains an Energy Mode Indicator showing which energy mode(s) the module can operate (see Table 3.1 (p. 8)).

Table 3.1. Energy Mode Description

Energy Mode	Name	Description
0 1 2 3 4	EM0 – Energy Mode 0 (Run mode)	In EM0, the CPU is running and consuming as little as 219 $\mu\text{A}/\text{MHz},$ when running code from flash. All peripherals can be active.
0 1 2 3 4	EM1 – Energy Mode 1 (Sleep Mode)	In EM1, the CPU is sleeping and the power consumption is only 80 μ A/MHz. All peripherals, including DMA, PRS and memory system, are still available.
01234	EM2 – Energy Mode 2 (Deep Sleep Mode)	In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz oscillator running, selected low energy peripherals (LCD, RTC, LETIMER, PCNT, LEUART, 1^2 C, LESENSE, OPAMP, USB, WDOG and ACMP) are still available. This gives a high degree of autonomous operation with a current consumption as low as 1.1 μ A with RTC enabled. Power-on Reset, Brown-out Detection and full RAM and CPU retention is also included.
01234	EM3 - Energy Mode 3 (Stop Mode)	In EM3, the low-frequency oscillator is disabled, but there is still full CPU and RAM retention, as well as Power-on Reset, Pin reset, EM4 wake-up and Brown-out Detection, with a consumption of only 0.8 μ A. The low-power ACMP, asynchronous external interrupt, PCNT, and I ² C can wake-up the device. Even in this mode, the wake-up time is a few microseconds.
01230	EM4 – Energy Mode 4 (Shutoff Mode)	In EM4, the current is down to 20 nA and all chip functionality is turned off except the pin reset, GPIO pin wake-up, GPIO pin retention, Backup RTC (including retention RAM) and the Power-On Reset. All pins are put into their reset state.

3.5 Product Overview

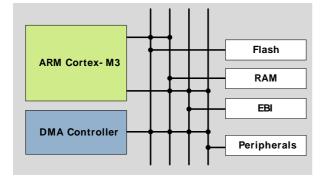

Table 3.2 (p. 8) shows a device overview of the EFM32GG Microcontroller Series, including peripheral functionality. For more information, the reader is referred to the device specific datasheets.

Table 3.2. EFM32GG Microcontroller Series

EFM32GG Part #	Flash	RAM	GPIO(pins)	USB	ГСD	USART+UART	LEUART	l²C	Timer(PWM)	LETIMER	RTC	PCNT	Watchdog	ADC(pins)	DAC(pins)	ACMP(pins)	AES	EBI	LESENSE	Op-Amps	Package
230F512	512	128	56	-	-	3	2	2	4 (12)	1	1	3	1	1 (8)	2 (2)	2 (16)	Y	-	Y	3	QFN64

5 Memory and Bus System

Quick Facts

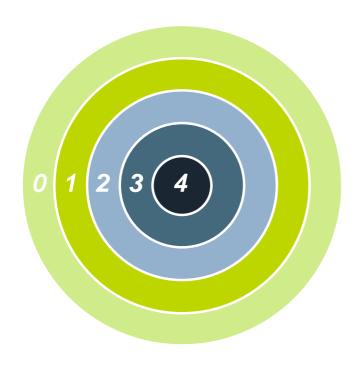
What?

A low latency memory system, including low energy flash and RAM with data retention, makes extended use of low-power energymodes possible.

Why?

RAM retention reduces the need for storing data in flash and enables frequent use of the ultra low energy modes EM2 and EM3 with as little as 0.8μ A current consumption.

How?


Low energy and non-volatile flash memory stores program and application data in all energy modes and can easily be reprogrammed in system. Low leakage RAM, with data retention in EM0 to EM3, removes the data restore time penalty, and the DMA ensures fast autonomous transfers with predictable response time.

5.1 Introduction

The EFM32GG contains an AMBA AHB Bus system allowing bus masters to access the memory mapped address space. A multilayer AHB bus matrix, using a Round-robin arbitration scheme, connects the master bus interfaces to the AHB slaves (Figure 5.1 (p. 16)). The bus matrix allows several AHB slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The AHB bus masters are:

- Cortex-M3 ICode: Used for instruction fetches from Code memory (0x00000000 0x1FFFFFF).
- Cortex-M3 DCode: Used for debug and data access to Code memory (0x00000000 0x1FFFFFF).
- Cortex-M3 System: Used for instruction fetches, data and debug access to system space (0x20000000 0xDFFFFFF).
- DMA: Can access EBI, SRAM, Flash and peripherals (0x00000000 0xDFFFFFF).
- USB DMA: Can access EBI, SRAM and Flash (0x80000000 0xDFFFFFF, 0x00000000 0x3FFFFFF), and the AHB-peripherals: USB and AES.

10 EMU - Energy Management Unit

Quick Facts

What?

The EMU (Energy Management Unit) handles the different low energy modes in the EFM32GG microcontrollers.

Why?

The need for performance and peripheral functions varies over time in most applications. By efficiently scaling the available resources in real-time to match the demands of the application, the energy consumption can be kept at a minimum.

How?

With a broad selection of energy modes, a high number of low-energy peripherals available even in EM2, and short wakeup time (2 µs from EM2 and EM3), applications can dynamically minimize energy consumption during program execution.

10.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The energy modes range from EM0 to EM4, where EM0, also called run mode, enables the CPU and all peripherals. The lowest recoverable energy mode, EM3, disables the CPU and most peripherals while maintaining wake-up and RAM functionality. EM4 disables everything except the POR, pin reset and optionally Backup RTC, 512 byte data retention, GPIO state retention, and EM4 reset wakeup request.

The various energy modes differ in:

- Energy consumption
- CPU activity
- Reaction time
- · Wake-up triggers
- Active peripherals
- · Available clock sources

Low energy modes EM1 to EM4 are enabled through the application software. In EM1-EM3, a range of wake-up triggers return the microcontroller back to EM0. EM4 can only return to EM0 by power on reset, external pin reset, EM4 GPIO wakeup request, or Backup RTC interrupt.

The EMU can also be used to turn off the power to unused SRAM blocks.

10.2 Features

- Energy Mode control from software
- · Flexible wakeup from low energy modes

Figure 14.2. EBI Non-multiplexed 8-bit Data, 8-bit Address Read Operation

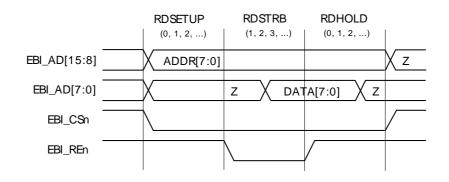
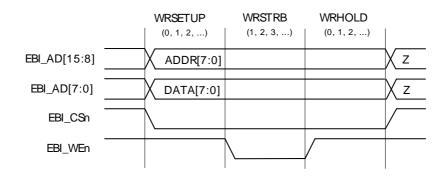
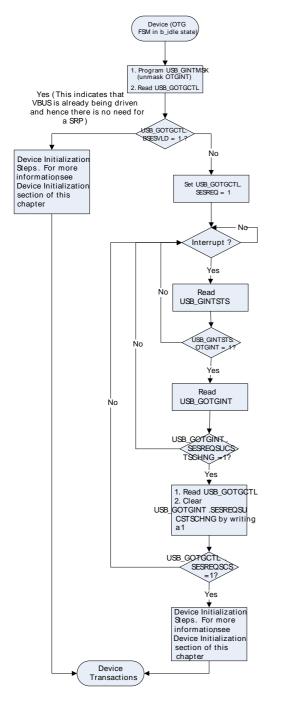



Figure 14.3. EBI Non-multiplexed 8-bit Data, 8-bit Address Write Operation

14.3.2 Multiplexed 16-bit Data, 16-bit Address Mode


In this mode, 16-bit address and 16-bit data is supported, but the utilization of an external latch is required. The 16-bit address and 16-bit data bits are multiplexed on the EBI_AD lines. An illustration of such a setup is shown in Figure 14.4 (p. 179). This mode is set by programming the MODE field in the EBI_CTRL register to D16A16ALE.

Note

In this mode the 16-bit address is organized in 2-byte chunks at memory addresses aligned to 2-byte offsets. Consequently, the LSB of the 16-bit address will always be 0. In order to double the address space, the 16-bit address is internally shifted one bit to the right so that the LSB of the address driven into the EBI_AD bus, i.e. the EBI_AD[0]-bit, corresponds to the second least significant bit of the address, i.e. ADDR[1]. At the external device, the LSB of the address must be tied either low or high in order to create a full address.

Figure 15.33. SRP Initiation by the Core When Acting as a B-Device

Note

The programming flow illustrated in Figure 15.33 (p. 328) is similar to OTG revision 1.3. This is because the presence or absence of VBUS pulsing is transparent to the application.

15.4.6.2 OTG Revision 2.0 Host Negotiation Protocol

When the core is operating as A-device, the application must execute a GetStatus() operation to the B-device with a frequency of THOST_REQ_POLL to determine the state of the host request flag in the B-device. If the host request flag is set in B-device it must program the core to change its role within THOST_REQ_SUSP.

Figure 15.34 (p. 329) shows the programming steps that need to be performed by A-device's application (core as A-device) in order to change its role to device. In Figure 15.34 (p. 329), the A-device performs a role change, becomes a B-device and then reverts back to host (A-device) mode of operation.

EFM°32

...the world's most energy friendly microcontrollers

	Name	Reset	Acce	ss Description
31:25	Reserved	To ensure c	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
24:21	FN	0x0	R	Frame Number device only
	This is the leas	t significant 4 bits of the Fi	ame number	in which the packet is received on the USB.
20:17	PKTSTS	0x0	R	Packet Status (host or device)
	Indicates the st	tatus of the received packe	et.	
	Value	Mode		Description
	1	GOUTNAK		Device mode: Global OUT NAK (triggers an interrupt).
	2	PKTRCV		Host mode: IN data packet received.
				Device mode: OUT data packet received.
	3	XFERCOMPL		Host mode: IN transfer completed (triggers an interrupt).
				Device mode: OUT transfer completed (triggers an interrupt).
	4	SETUPCOMPL		Device mode: SETUP transaction completed (triggers an interrupt).
	5	TGLERR		Host mode: Data toggle error (triggers an interrupt).
	6	SETUPRCV		Device mode: SETUP data packet received.
	7	CHLT		Host mode: Channel halted (triggers an interrupt).
16:15	DPID	0x0	R	Data PID (host or device)
				cket. Device mode: Indicates the Data PID of the received OUT data packet.
	Host mode: Inc	licates the Data PID of the	received pac	Skel. Device mode. Indicates the Data indicate interfectived COT data packet.
	Host mode: Inc	licates the Data PID of the	received pac	
			received pac	· · ·
	Value	Mode	received pac	Description
	Value 0	Mode DATA0	received pac	Description DATA0 PID.
	Value 0 1	Mode DATA0 DATA1	received pac	Description DATA0 PID. DATA1 PID.
14:4	Value 0 1 2	Mode DATA0 DATA1 DATA2	R received pace	Description DATA0 PID. DATA1 PID. DATA2 PID.
14:4	Value 0 1 2 3 BCNT	ModeDATA0DATA1DATA2MDATA	R	Description DATA0 PID. DATA1 PID. DATA2 PID. MDATA PID. Byte Count (host or device)
14:4	Value 0 1 2 3 BCNT Host mode: Inc	Mode DATA0 DATA1 DATA2 MDATA 0x000	R e received IN	Description DATA0 PID. DATA1 PID. DATA2 PID. MDATA PID. Byte Count (host or device) I data packet.
14:4	Value 0 1 2 3 BCNT Host mode: Inc	Mode DATA0 DATA1 DATA2 MDATA 0x000 dicates the byte count of th	R e received IN	Description DATA0 PID. DATA1 PID. DATA2 PID. MDATA PID. Byte Count (host or device) I data packet.
	Value 0 1 2 3 BCNT Host mode: Inc Device mode: I CHEPNUM	Mode DATA0 DATA1 DATA2 MDATA 0x000 dicates the byte count of th ndicates the byte count of 0x0	R e received IN the received R	Description DATA0 PID. DATA1 PID. DATA2 PID. MDATA PID. Byte Count (host or device) I data packet. data packet.

15.6.16 USB_GRXSTSP - Receive Status Read and Pop Register

A read to the Receive Status Read and Pop register returns the contents of the top of the Receive FIFO and pops the top data entry out of the RxFIFO. The receive status contents must be interpreted differently in Host and Device modes. The core ignores the receive status pop/read when the receive FIFO is empty and returns a value of 0x00000000. The application must only pop the Receive Status FIFO when the Receive FIFO Non-Empty bit of the Core Interrupt register (USB_GINTSTS.RXFLVL) is asserted.

Offset			Bi	t Positio	on					
0x3C020	31 30 29 28 27 27 25 25	24 23 22 21	20 19 18 17	16 15	14 12 13 14 15 14 15 14 15 15 16 17	0 7 10 3				
Reset		0×0	0×0	0×0	000X0	0×0				
Access		Ľ	R	ĸ	٢	٣				
Name		Z	PKTSTS	DIPID	BCNT	CHEPNUM				
Bit	Name	Reset Access Description								
31:25	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3,								

Bit	Name	Reset	Access	Description
		ister (USB_GINTST	S.PRTINT). This	to trigger an interrupt to the application using the Host Port Interrupt bit of bit can be set only by the core and the application should write 1 to clear rupt.
0	PRTCONNSTS	0	R	Port Connect Status
	When this bit is 1 a de	evice is attached to t	the port.	

15.6.35 USB_HCx_CHAR - Host Channel x Characteristics Register

Offset			-								-				Bi	t Po	siti	on						•								
0x3C500	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	ω	7	9	5	4	ю	2	-	0
Reset	0	0	0		00 ×0							nxn		0×0	0		0		0x0								0×000					
Access	RW1H	RW1H	RW				RW					۶ ۲		RW	RW		RW		RW								RW					
Name	CHENA	CHDIS	ODDFRM		DEVADDR							MC		ЕРТҮРЕ	LSPDDEV		EPDIR		EPNUM								MPS					

31	Name	Reset	Access	Description
	CHENA	0	RW1H	Channel Enable
	This field is set	t by the application and cl	eared by the core.	The state of this bit reflects the channel enable status.
30	CHDIS	0	RW1H	Channel Disable
				data on a channel, even before the transfer for that channel is complete. of before treating the channel as disabled.
29	ODDFRM	0	RW	Odd Frame
		(reset) by the application ic (isochronous and interr		OTG host must perform a transfer in an odd frame. This field is applicable
28:22	DEVADDR	0x00	RW	Device Address
	This field selec	ts the specific device ser	ving as the data so	urce or sink.
21:20	MC	0x0	RW	Multi Count
	endpoint. For I		s field is used only	umber of transactions that must be executed per frame for this periodic \prime in DMA mode, and specifies the number packets to be fetched for this n.
19:18	EPTYPE	0x0	RW	Endpoint Type
	Indicates the tr	ansfer type selected.		
	Value	Mode	Des	scription
	0	CONTROL	Cor	ntrol endpoint.
	1	ISO	Isoc	chronous endpoint.
	2	BULK	Bull	k endpoint.
	3	INT	Inte	errupt endpoint.
17	LSPDDEV	0	RW	Low-Speed Device
	This field is set	t by the application to indi	cate that this chanr	nel is communicating to a low-speed device.
	Reserved	To ensure	compatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16		10 0110410		aure devices, always write bits to 0. Wore information in Section 2.1 (p. 5)
16 15	EPDIR	0	RW	Endpoint Direction
		0	or OUT.	

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	SPCAVAIL	0x0200	R	TxFIFO Space Available
	Indicates the amou	nt of free space availab	ole in the Endpoi	nt TxFIFO. Values are in terms of 32-bit words.

15.6.60 USB_DOEP0CTL - Device OUT Endpoint 0 Control Register

The application uses this register to control the behavior of each logical endpoint other than endpoint 0.

Offset														Bi	it Po	ositi	on					,									
0x3CB00	31	30	29	28	27	26	25	24	23	22	21	20	19 19	17	16	15	4	13	12	1	10	6	ø	2	- 4	2	4	t (*	, c	v ,	- 0
Reset	0	0			0	0					0	0	0X0	0		~															0x0
Access	RW1H	ĸ			M1	W1					RW1H	RW	ĸ	ъ		ĸ															ĸ
Name	EPENA	EPDIS			SNAK	CNAK					STALL	SNP	ЕРТҮРЕ	NAKSTS		USBACTEP															MPS
Bit	Na	ime						Re	eset			A	ccess	;	De	scr	ipti	on													
31	EP	ENA	١					0				R	W1H		En	dpoi	nt E	Ena	ble												
	this	s bit l	befo	re se	etting	, an	y of	the	follo	wing	inte	rrup	n has a ts on th transfei	is er	ated ndpo	the r int: S	ner SET	nor UP	y to ' Pha	ase	Don	e, Er									
30		DIS s bit	is al	lway	s 0. ⁻	The	ap	0 plica	tion	cann	ot di	R isabl	e contr	ol O		d poi ndpo			able	!											
29:28	Re	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p														1 (p. 3)															
27	SN																														
		SNAK0W1Set NAKA write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set bit on a Transfer Completed interrupt, or after a SETUP is received on the endpoint.																													
26	CN	AK						0				W	/1		Cle	ar N	IAK														
	Αv	vrite	to th	nis bi	t clea	ars	the	NAK	(bit f	for th	e er	idpo	int.																		
25:22	Re	serv	ed					То	ens	ure c	omp	atib	ility with	n futu	ire d	evice	es, a	alw	ays	write	bits	to 0	. Mo	re ir	nfori	mati	on ir	n Se	ctior	n 2.1	1 (p. 3)
21	ST	ALL						0				R	W1H		Ha	ndsł	nake	е													
	OU	T N	AK is		alor	ig v	ith 1	this I	oit, th	ne S			clears takes p																		
20	SN	Ρ						0				R	W		Sn	оор	Мо	de													
				figur then							o mo	ode.	In Sno	op m	node	, the	cor	re o	loes	not	che	ck tł	ne co	orreo	ctne	iss c	of Ol	UT p	back	ets	before
19:18	EP	TYP	Έ					0x0)			R			En	dpoi	nt T	Гур	е												
	На	rdco	ded	to 0.	End	lpoi	nt 0	is a	lway	sac	ontr	ol er	ndpoint.																		
17	NA	KST	S					0				R			NA	K St	atu	s													
	NA is s	K ha space	andsl e in 1	hake	s on RxFII	thi FO	s er to a	ndpo Iccor	int. V nmo	Nher date	n eith	ner t	< hands he appl ming pa	icati	on o	r the	cor	re s	ets	this	bit, t	he c	ore	stop	os re	eceiv	ving	data	a, ev	en i	f there
16	Re	serv	ed					То	ens	ure c	omp	atib	ility with	n futu	ire d	evice	es, a	alw	ays	write	bits	to 0	. Mo	re ir	nfori	mati	on ir	n Se	ctior	n 2.1	1 (p. 3)
15	US	BAC	TEF	5				1				R			US	B Ad	ctive	e E	ndp	oint											
	Thi	s bit	is al	lway	s 1, i	indi	catii	ng th	at a	cont	rol e	ndp	oint 0 is	s alw	ays	activ	re in	all	con	figu	ratio	ns a	nd ir	terf	ace	s.					

Offset															Di		oiti	- III														
Unset			1					-			1				DI	t Po	siti	on			1											
0x49000	3	8	29	28	27	26	25	24	53	52	21	20	19	18	17	16	15	4	13	5	7	9	6	œ	~	9	2	4	e	2	~	0
Reset								,								*****																
Access																МЯ																
Name																EIEO12D																
Bit	Na	me						Re	set			Δ		222		De	scri	intic	n													

Bit	Name	Reset	Access	Description
31:0	FIFO12D	0xXXXXXXXX	RW	Host Channel 12 FIFO
	FIFO 12 push/pop region.	Used in slave mode	е.	

15.6.82 USB_FIFO13Dx - Host Channel 13 FIFO

This register, available in Host mode, is used to read or write the FIFO space for channel 13, in a given direction. If a host channel is of type IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the FIFO can only be written on the channel.

Offset															Bi	t Po	siti	on							÷							
			1	1	<u> </u>	<u> </u>		1					1 1		1	1		1			1	1								1		
0x4A000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	2	9	5	4	ю	2	-	0
Reset																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																
Access																1010																
Name		FIFO13D																														
D 14																																

Bit	Name	Reset	Access	Description			
31:0	FIFO13D	0xXXXXXXXX	RW	Host Channel 13 FIFO			
	FIFO 13 push/pop region. Used in slave mode.						

When enabling the I^2C , the ABORT command or the Bus Idle Timeout feature must be applied prior to use even if the BUSY flag is not set.

16.3.3 Safely Disabling and Changing Slave Configuration

The I²C slave is partially asynchronous, and some precautions are necessary to always ensure a safe slave disable or slave configuration change. These measures should be taken, if (while the slave is enabled) the user cannot guarantee that an address match will not occur at the exact time of slave disable or slave configuration change.

Worst case consequences for an address match while disabling slave or changing configuration is that the slave may end up in an undefined state. To reset the slave back to a known state, the EN bit in I2Cn_CTRL must be reset. This should be done regardless of whether the slave is going to be re-enabled or not.

16.3.4 Clock Generation

The SCL signal generated by the I^2C master determines the maximum transmission rate on the bus. The clock is generated as a division of the peripheral clock, and is given by Equation 16.2 (p. 420) :

f²C Maximum Transmission Rate

$$f_{SCL} = 1/(T_{low} + T_{high}), \qquad (16.2)$$

where

 T_{low} and T_{high} is the low and high periods of the clock signal respectively, given below. When the clock is not streched, the low and high periods of the clock signal are:

²C High and Low Cycles Equations

$$\Gamma_{high} = (N_{high} \times (CLKDIV + 1))/f_{HFPERCLK},$$

$$T_{low} = (N_{low} \times (CLKDIV + 1))/f_{HFPERCLK}.$$
(16.3)

Equation 16.3 (p. 420) and Equation 16.2 (p. 420) does not apply for low clock division factors (0, 1 and 2) because of synchronization. For these clock division factors, the formulas for computing high and low periods of the clock signal are given in Table 16.2 (p. 420).

CLKDIV	Standard (4:4)		Asymmetric (6:3)	Fast (11:6)		
	T _{low}	T _{high}	T _{low}	T _{high}	T _{low}	T _{high}	
0	7/f _{HFPERCLK}	7/f _{HFPERCLK}	9/f _{HFPERCLK}	6/f _{HFPERCLK}	14/f _{HFPERCLK}	9/f _{HFPERCLK}	
1	10/f _{HFPERCLK}	10/f _{HFPERCLK}	14/f _{HFPERCLK}	8/f _{HFPERCLK}	24/f _{HFPERCLK}	14/f _{HFPERCLK}	
2	15/f _{HFPERCLK}	15/f _{HFPERCLK}	21/f _{HFPERCLK}	12/f _{HFPERCLK}	36/f _{HFPERCLK}	21/f _{HFPERCLK}	

The values of N_{low} and N_{high} and thus the ratio between the high and low parts of the clock signal is controlled by CLHR in the I2Cn_CTRL register. The available modes are summarized in Table 16.3 (p. 421) along with the highest I²C-bus frequencies in the given modes that can be achieved without violating the timing specifications of the I²C-bus. The maximum data hold time is dependent on the DIV and is given by:

Maximum Data Hold Time

$$t_{HD,DAT-max} = (4+DIV)/f_{HFPERCLK}$$

Note

DIV must be set to 1 or higher during slave mode operation.

(16.4)

Bit	Name	Reset	Access	Description					
	When set, the	bus automatically goes id	le on a bus idle tim	eout, allowing new transfers to be initiated.					
	Value	Description	Description						
	0	A bus idle time	out has no effect on th	e bus state.					
	1	A bus idle time	out tells the I ² C modu	e that the bus is idle, allowing new transfers to be initiated.					
14	Reserved	To ensure	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3					
3:12	BITO Use to generat bus transaction by BITO, it sets idle timeout is STOP condition	0x0 te a timeout when SCL h h, i.e. the BUSY flag is s s the BITO interrupt flag. active as long as BUSY n is detected and when th	RW as been high for a et, a timer is starte The BITO interrup is set. It is thus st	Bus Idle Timeout given amount time between a START and STOP condition. When ir d whenever SCL goes high. When the timer reaches the value defin flag will then be set periodically as long as SCL remains high. The b opped automatically on a timeout if GIBITO is set. It is also stopped					
13:12	BITO Use to generat bus transactior by BITO, it sets idle timeout is STOP condition a START cond	0x0 te a timeout when SCL h h, i.e. the BUSY flag is s s the BITO interrupt flag. active as long as BUSY n is detected and when th ition is detected.	RW as been high for a et, a timer is starte The BITO interrup is set. It is thus st he ABORT comma	Bus Idle Timeout given amount time between a START and STOP condition. When in d whenever SCL goes high. When the timer reaches the value define flag will then be set periodically as long as SCL remains high. The b opped automatically on a timeout if GIBITO is set. It is also stopped id is issued. The timeout is activated whenever the bus goes BUSY, i.					
13:12	BITO Use to generat bus transaction by BITO, it sets idle timeout is STOP condition a START cond	0x0 te a timeout when SCL h h, i.e. the BUSY flag is s s the BITO interrupt flag. active as long as BUSY n is detected and when th ition is detected.	RW as been high for a et, a timer is starte The BITO interrup is set. It is thus st ne ABORT comman	Bus Idle Timeout given amount time between a START and STOP condition. When in d whenever SCL goes high. When the timer reaches the value define flag will then be set periodically as long as SCL remains high. The bi opped automatically on a timeout if GIBITO is set. It is also stopped ad is issued. The timeout is activated whenever the bus goes BUSY, is cription					
13:12	BITO Use to generat bus transactior by BITO, it sets idle timeout is STOP condition a START cond	0x0 te a timeout when SCL h h, i.e. the BUSY flag is s s the BITO interrupt flag. active as long as BUSY n is detected and when th ition is detected.	RW as been high for a et, a timer is starte The BITO interrup is set. It is thus st ne ABORT comman Des Tim Tim	Bus Idle Timeout given amount time between a START and STOP condition. When in d whenever SCL goes high. When the timer reaches the value define flag will then be set periodically as long as SCL remains high. The bus opped automatically on a timeout if GIBITO is set. It is also stopped ad is issued. The timeout is activated whenever the bus goes BUSY, i. cription eout disabled					
13:12	BITO Use to generat bus transaction by BITO, it sets idle timeout is STOP condition a START cond	0x0 te a timeout when SCL h h, i.e. the BUSY flag is s s the BITO interrupt flag. active as long as BUSY n is detected and when th ition is detected.	RW as been high for a et, a timer is starte The BITO interrup is set. It is thus st ne ABORT comman Des Tim 5 Tim a 5 Tim	Bus Idle Timeout given amount time between a START and STOP condition. When in d whenever SCL goes high. When the timer reaches the value define flag will then be set periodically as long as SCL remains high. The bu opped automatically on a timeout if GIBITO is set. It is also stopped ad is issued. The timeout is activated whenever the bus goes BUSY, i.e. cription eout disabled eout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results i					

9:8 CLHR

0x0 RW Clock Low High Ratio

Determines the ratio between the low and high parts of the clock signal generated on SCL as master.

Value	Mode	Description
0	STANDARD	The ratio between low period and high period counters (N_{low} : N_{high}) is 4:4
1	ASYMMETRIC	The ratio between low period and high period counters (N_{low} : N_{high}) is 6:3
2	FAST	The ratio between low period and high period counters $(N_{\text{low}}{:}N_{\text{high}})$ is 11:6

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

7 Reserved

6

5

4

GCAMEN 0 RW General Call Address Match Enable

Set to enable address match on general call in addition to the programmed slave address.

Value	Description
0	General call address will be NACK'ed if it is not included by the slave address and address mask.
1	When a general call address is received, a software response is required.

ARBDIS 0 RW Arbitration Disable

A master or slave will not release the bus upon losing arbitration.

ſ	Value	Description
	0	When a device loses arbitration, the ARB interrupt flag is set and the bus is released.
	1	When a device loses arbitration, the ARB interrupt flag is set, but communication proceeds.

AUTOSN0RWAutomatic STOP on NACKWrite to 1 to make a master transmitter send a STOP when a NACK is received from a slave.

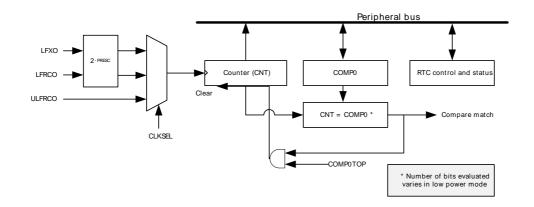
Value	Description
0	Stop is not automatically sent if a NACK is received from a slave.
1	The master automatically sends a STOP if a NACK is received from a slave.

3

AUTOSE 0 RW Automatic STOP when Empty

Write to 1 to make a master transmitter send a STOP when no more data is available for transmission.

	Value	Description		
	0	A stop must b	e sent manually whe	n no more data is to be transmitted.
	1	The master a	utomatically sends a	STOP when no more data is available for transmission.
2	AUTOACK	0	RW	Automatic Acknowledge


Set to enable automatic acknowledges.

22.3 Functional Description

EFM³2

The Backup RTC is a 32-bit counter with one compare channel. The Backup RTC resides in a power domain which can be configured to always be on, in EM0 through EM4. This domain also has the possibility to be powered by a backup battery. For further details on the backup power domain, refer to Section 10.3.4 (p. 111). Available in all energy modes, the Backup RTC is ideal for applications where keeping track of time in combination with extremely low energy consumption is essential. An overview of the backup RTC is shown in Figure 22.1 (p. 571).

22.3.1 Counter

The Backup RTC is enabled by configuring MODE in the BURTC_CTRL register. This configuration of MODE determines in which energy modes the backup RTC is operational. It will always be operational in EM0-EM2, and optionally in EM3 and EM4. The Backup RTC is available when the system is in backup mode if MODE is set to EM4EN. The counter is cleared by setting RSTEN in the control register. A system reset will not clear the counter. The counter value can be read through the CNT register.

22.3.2 Clock source

The Backup RTC is clocked by LFXO, LFRCO, or ULFRCO, depending on the configuration of CLKSEL in BURTC_CTRL. The PRESC bit-field in BURTC_CTRL controls the clock prescaling factor. Prescaler is only available for LFXO and LFRCO. When using the ULFRCO as clock source, only two frequency options are available; 2kHz and 1kHz. The 2kHz clock is selected when PRESC in BURTC_CTRL is set to DIV1, and the 1kHz clock is selected when PRESC is set to any other value. Available frequencies when using LFXO or LFRCO are given in Equation 22.1 (p. 571). CLKSEL should not be changed while the backup RTC is running.

BURTC Frequency Equation

$$f_{BURTC} = 32768/2^{PRESC} Hz, PRESC = 0..7$$
 (22.1)

When the LFXO or LFRCO is enabled, the Backup RTC will not use the clock until the timeout defined in the CMU has run out, i.e. the LFXORDY/LFRCORDY flag in CMU_STATUS is set. When an oscillator first has been enabled and is used by the Backup RTC, the Backup RTC will keep the selected clock source enabled, independent of both energy mode and CMU settings.

22.3.3 Compare channel

The backup RTC has one compare channel. The compare value is set by writing to the COMP0 register. When the value of CNT equals the value of COMP0, the COMP0 interrupt flag is set. If COMP0TOP in CTRL is set, the counter will wrap around when reaching the value in the compare register, COMP.

25.3.4 Sensor interaction

Many sensor types require some type of excitation in order to work. LESENSE can generate a variety of sensor stimuli, both on the same pin as the measurement is to be made on, and on alternative pins.

By default, excitation is performed on the pin associated with the channel, i.e. excitation and sensor measurement is performed on the same pin. The mode of the pin during the excitation phase is configured in EXMODE in CHx_INTERACT. The available modes during the excite phase are:

- DISABLED: The pin is disabled.
- HIGH: The pin is driven high.
- LOW: The pin is driven low.
- DACOUT: The pin is connected to the output of a DAC channel.

Note

Excitation with DAC output is only available on channels 0, 1, 2, and 3 (DAC0_CH0) and channels 12, 13, 14, and 15 (DAC0_CH1).

If the DAC is in opamp-mode, setting EXMODE to DACOUT will result in excitation with output from the opamp.

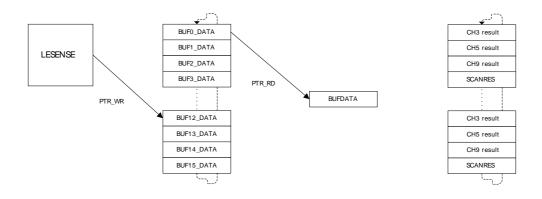

LESENSE is able to perform sensor excitation on another pin than the one to be measured. When ALTEX in CHx_INTERACT is set, the excitation will occur on the alternative excite pin associated with the given channel. All LESENSE channels mapped to ACMP0 have their alternative channel mapped to the corresponding channel on ACMP1, and vice versa. Alternatively, the alternative excite pins can be routed to the LES_ALTEX pins. Mapping of the alternative excite pins is configured in ALTEXMAP in CTRL. Table 25.2 (p. 627) summarizes the mapping of excitation pins for different configurations.

Table 25.2. LESENSE excitation pin mapping

LESENSE channel	ALTEX = 0	ALTEX = 1				
		ALTEXMAP = ACMP	ALTEXMAP = ALTEX			
0	ACMP0_CH0	ACMP1_CH0	LES_ALTEX0			
1	ACMP0_CH1	ACMP1_CH1	LES_ALTEX1			
2	ACMP0_CH2	ACMP1_CH2	LES_ALTEX2			
3	ACMP0_CH3	ACMP1_CH3	LES_ALTEX3			
4	ACMP0_CH4	ACMP1_CH4	LES_ALTEX4			
5	ACMP0_CH5	ACMP1_CH5	LES_ALTEX5			
6	ACMP0_CH6	ACMP1_CH6	LES_ALTEX6			
7	ACMP0_CH7	ACMP1_CH7	LES_ALTEX7			
8	ACMP1_CH0	ACMP0_CH0	LES_ALTEX0			
9	ACMP1_CH1	ACMP0_CH1	LES_ALTEX1			
10	ACMP1_CH2	ACMP0_CH2	LES_ALTEX2			
11	ACMP1_CH3	ACMP0_CH3	LES_ALTEX3			
12	ACMP1_CH4	ACMP0_CH4	LES_ALTEX4			
13	ACMP1_CH5	ACMP0_CH5	LES_ALTEX5			
14	ACMP1_CH6	ACMP0_CH6	LES_ALTEX6			
15	ACMP1_CH7	ACMP0_CH7	LES_ALTEX7			

Figure 25.9. Circular result buffer

The right hand side of Figure 25.9 (p. 633) illustrates how the result buffer would be filled when channels 3,5, and 9 are enabled and have STRSAMPLE in CHx_EVAL set, in addition to STRSCANRES in CTRL. The measurement result from the three channels will be sequentially written during the scan, while SCANRES is written to the result buffer upon scan completion.

25.3.8 DAC interface

LESENSE is able to drive the DAC for generation of accurate reference voltages. DAC channels 0 and 1 are individually configured in the PERCTRL register. The conversion mode can be set to either continuous, sample/hold or sample/off. For further details about these modes, refer to Section 29.3.1 (p. 713). Both DAC channels are refreshed prior to each sensor measurement, as depicted in Figure 25.3 (p. 626). The conversion data is either taken from the data registers in the EFM32GG DAC interface (DAC0_CH0DATA and DAC0_CH1DATA) or from the ACMPTHRES bit-field in the CHx_INTERACT register for the active LESENSE channel. DAC data used is configured in DACCHxDATA in PERCTRL.

The DAC interface runs on AUXHFRCO and will enable this when it is needed. The DACPRESC bit-field in PERCTRL is used to prescale the AUXHFRCO to achieve wanted clock frequency for the LESENSE DAC interface. The frequency should not exceed 500kHz, i.e. DACPRESC has to be set to at least 1. The prescaler may also be used to tune how long the DAC should drive its outputs in sample/off mode.

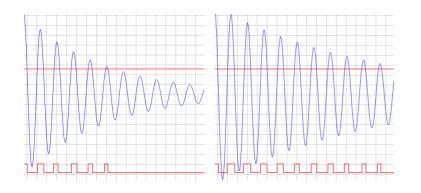
Bias configuration, calibration and reference selection is done in the EFM32GG DAC module and LESENSE will not override these configurations. If a bandgap reference is selected for the DAC, the DACREF bit in PERCTRL should be set to BANDGAP.

LESENSE has the possibility to control switches that connect the DAC outputs to the pins associated with ACMP0_CH0-3 and ACMP1_CH12-15. This makes LESENSE able to excite sensors with output from the DAC channels.

The DAC may be chosen as reference to the analog comparators for accurate reference generation. If the DAC is configured in continuous or sample/hold mode this does not require any external components. If sample/off mode is used, an external capacitor is needed to keep the voltage in between samples. To connect the input from the DAC to the ACMP to this external capacitor, connect the capacitor to the DAC pin for the given channel and set OPAxSHORT in DAC_OPACTRL.

Note

The DAC mode should not be altered while DACACTIVE in STATUS is set


25.3.9 ACMP interface

The ACMPs are used to measure the sensors, and have to be configured according to the application in order for LESENSE to work properly. Depending on the configuration in the ACMP0MODE and

EFM°32

exceeds a certain level. These pulses are counted using an asynchronous counter and compared with the threshold in COMPTHRES in the CHx_EVAL register. If the number of pulses exceeds the threshold level, the sensor is said to be active, otherwise it is inactive. Figure 25.12 (p. 636) illustrates how the output pulses from the ACMP correspond to damping of the oscillations. The results from sensor evaluation can automatically be fed into the decoder in order to keep track of rotations.

Figure 25.12. LC sensor oscillations

The following steps show how to configure LESENSE to scan through the four LC sensors 100 times per second.

- 1. Assuming LFACLK_{LESENSE} is 32kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will make the LESENSE scan frequency 100Hz.
- 2. Enable the DAC and configure it to produce a voltage of Vdd/2.
- 3. Enable channels 0 through 3 in CHEN. Set IDLECONF for the active channels to DACOUT. The channel pins should be set to Vdd/2 in the idle phase to damp the oscillations.
- 4. Configure the ACMP to use scaled Vdd as negative input, refer to ACMP chapter for details.
- 5. Enable and configure PCNT and asynchronous PRS.
- 6. Configure the GPIOs used as PUSHPULL.
- 7. Configure the following bit fields in CHx_CONF, for channels 0 through 3:
 - a. Set EXCLK to AUXHFRCO. AUXHFRCO is needed to achieve short excitation time.
 - b. Set EXTIME to an appropriate value. Excitation will last for EXTIME/AUXHFRCO seconds (prescalar value in AUXPRESC in TIMCTRL is 0).
 - c. Set EXMODE to LOW. The LC sensors are excited by pulling the excitation pin low.
 - d. Set SAMPLE to COUNTER and COMP to LESS. Status of each sensor is evaluated based on the number of pulses generated by the ACMP. If they are less than the threshold value, the sensor is said to be active.
 - e. Set SAMPLEDLY to an appropriate value, each sensor will be measured for SAMPLEDLY/ LFACLK_{LESENSE} seconds.
- 8. Set CTRTHRESHOLD to an appropriate value. If the sensor is active, the counter value after the measurement phase should be less than the threshold. If it inactive, the counter value should be greater than the threshold.
- 9. Start scan sequence by writing a 1 to START in CMD.

25.3.14.3 LESENSE decoder 1

The example below illustrates how the LESENSE module can be used for decoding using three sensors

1. Configure STx_TCONFA and STx_TCONFB as described in Table 25.4 (p. 638) .

Table 25.4. LESENSE decoder	^r configuration
-----------------------------	----------------------------

Register	NEXTSTATE	СОМР	MASK	CHAIN
ST0_TCONFA	8	0b1000	0b0111	1
ST0_TCONFB	2	0b0001	0b1000	-
ST1_TCONFA	6	0b0010	0b1000	0
ST1_TCONFB	6	0b0010	0b1000	-
ST2_TCONFA	8	0b1000	0b0111	1
ST2_TCONFB	4	0b0011	0b1000	-
ST3_TCONFA	0	0b0000	0b1000	0
ST3_TCONFB	0	0b0000	0b1000	-
ST4_TCONFA	8	0b1000	0b0111	1
ST4_TCONFB	6	0b0010	0b1000	-
ST5_TCONFA	2	0b0001	0b1000	0
ST5_TCONFB	2	0b0001	0b1000	-
ST6_TCONFA	8	0b1000	0b0111	1
ST6_TCONFB	0	060000	0b1000	-
ST7_TCONFA	4	0b0011	0b1000	0
ST7_TCONFB	4	0b0011	0b1000	-

2. To initialize the decoder, run one scan, and read the present sensor status from SENSORSTATE. Then write the index of this state to DECSTATE.

3. Write to START in CMD to start scanning of sensors and decoding.

...the world's most energy friendly microcontrollers

Bit	Name	Reset	Acces	s Description
	Value	Mode		Description
	2	LOW		CH10 output is low in idle phase
19:18	CH9	0x0	RW	Channel 9 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH9 output is disabled in idle phase
	1	HIGH		CH9 output is high in idle phase
	2	LOW		CH9 output is low in idle phase
17:16	CH8	0x0	RW	Channel 8 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH8 output is disabled in idle phase
	1	HIGH		CH8 output is high in idle phase
	2	LOW		CH8 output is low in idle phase
15:14	CH7	0x0	RW	Channel 7 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH7 output is disabled in idle phase
	1	HIGH		CH7 output is high in idle phase
	2	LOW		CH7 output is low in idle phase
13:12	CH6	0x0	RW	Channel 6 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH6 output is disabled in idle phase
	1	HIGH		CH6 output is high in idle phase
	2	LOW		CH6 output is low in idle phase
11:10	CH5	0x0	RW	Channel 5 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH5 output is disabled in idle phase
	1	HIGH		CH5 output is high in idle phase
	2	LOW		CH5 output is low in idle phase
9:8	CH4	0x0	RW	Channel 4 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH4 output is disabled in idle phase
	1	HIGH		CH4 output is high in idle phase
	2	LOW		CH4 output is low in idle phase
7:6	CH3	0x0	RW	Channel 3 idle phase configuration
	Value	Mode		Description
	0	DISABLE		CH3 output is disabled in idle phase
	1	HIGH		CH3 output is high in idle phase
	2	LOW		CH3 output is low in idle phase
	3	DACCH0		CH3 output is connected to DAC CH0 output in idle phase

	· · · · · · · · · · · · · · · · · · ·			
5:4	CH2	0x0	RW	Channel 2 idle phase configuration

...the world's most energy friendly microcontrollers

Bit	Name	Reset	Acces	ss Description
	Value	Mode		Description
	0	DISABLE		CH2 output is disabled in idle phase
	1	HIGH		CH2 output is high in idle phase
	2	LOW		CH2 output is low in idle phase
	3	DACCH0		CH2 output is connected to DAC CH0 output in idle phase
3:2	CH1	0x0	RW	Channel 1 idle phase configuration

	Value	Mode		Description
	0	DISABLE		CH1 output is disabled in idle phase
	1	HIGH		CH1 output is high in idle phase
	2	LOW		CH1 output is low in idle phase
	3	DACCH0		CH1 output is connected to DAC CH0 output in idle phase
1:0	CH0	0x0	RW	Channel 0 idle phase configuration

ValueModeDescription0DISABLECH0 output is disabled in idle phase1HIGHCH0 output is high in idle phase2LOWCH0 output is low in idle phase3DACCH0CH0 output is connected to DAC CH0 output in idle phase

25.5.16 LESENSE_ALTEXCONF - Alternative excite pin configuration (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

Offset																Bi	t Pc	ositi	on													
0x03C	5	5 6	3	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	5	10	6	8	7	9	5	4	e	7	-	• •
Reset										0	0	0	0	0	0	0	0			0×0	0X0		0	0X0	0X0		d	nxn		DXD		0×0
Access										RW	RW	RW	RW	RW	RW	RW	RW			RW	R N			≷ Y	RW			2 2 2		2 2 2		RV
Name										AEX7	AEX6	AEX5	AEX4	AEX3	AEX2	AEX1	AEXO			IDLECONF6	IDLECONF5			IDLECONF4	IDLECONF3			IDLECONFZ				IDLE CONF0
Bit	ľ	Name Reset Access Description Reserved To oppure compatibility with future devices: always write bits to 0. More information in Section 2.1 (n)																														
31:24	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p.															(p. 3)																
23	A	EX7	,						0				R	W			AL	TEX	7 alv	ways e	xcite	ena	able									
22	A	EX6	;						0				R	W			AL	TEX	6 alv	ways e	xcite	ena	able									
21	A	EX5	;						0				R	W			AL	TEX	5 alv	ways e	xcite	ena	able									
20	A	EX4	Ļ						0				R	W			AL	TEX	4 alv	ways e	xcite	ena	able									
19	A	EX3	;						0				R	W		ALTEX3 always excite enable																
18	A	EX2	2						0				R	W	ALTEX2 always excite enable																	

Bit	Name	Reset	Acces	s Description
	Value	Mode		Description
	0	DISABLE		ALTEX0 output is disabled in idle phase
	1	HIGH		ALTEX0 output is high in idle phase
	2	LOW		ALTEX0 output is low in idle phase

25.5.17 LESENSE_IF - Interrupt Flag Register

Offset															Bi	t Po	ositi	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	ω	7	9	5	4	e	2	-	0
Reset										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										ĸ	ĸ	ĸ	۲	К	ĸ	ĸ	۲	ĸ	۲	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ъ	ĸ	ĸ	ĸ	ĸ	ĸ
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО

Bit	Name	Reset	Access Description
31:23	Reserved	To ensure co	ompatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
22	CNTOF	0	R
	Set when the LESENSE	counter overflow	/S.
21	BUFOF	0	R
	Set when the result buff	er overflows	
20	BUFLEVEL	0	R
	Set when the data buffe	r is full.	
19	BUFDATAV	0	R
	Set when data is availal	ole in the result bu	uffer.
18	DECERR	0	R
	Set when the decoder d	etects an error	
17	DEC	0	R
	Set when the decoder h	as issued and inte	errupt request
16	SCANCOMPLETE	0	R
	Set when a scan seque	nce is completed	
15	CH15	0	R
	Set when channel 15 tri	ggers	
14	CH14	0	R
	Set when channel 14 tri	ggers	
13	CH13	0	R
	Set when channel 13 tri	ggers	
12	CH12	0	R
	Set when channel 12 tri	ggers	
11	CH11	0	R
	Set when channel 11 tri	ggers	
10	CH10	0	R
	Set when channel 10 tri	ggers	
9	CH9	0	R
	Set when channel 9 trig	gers	

26.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ACMPn_CTRL	RW	Control Register
0x004	ACMPn_INPUTSEL	RW	Input Selection Register
0x008	ACMPn_STATUS	R	Status Register
0x00C	ACMPn_IEN	RW	Interrupt Enable Register
0x010	ACMPn_IF	R	Interrupt Flag Register
0x014	ACMPn_IFS	W1	Interrupt Flag Set Register
0x018	ACMPn_IFC	W1	Interrupt Flag Clear Register
0x01C	ACMPn_ROUTE	RW	I/O Routing Register

26.5 Register Description

26.5.1 ACMPn_CTRL - Control Register

Offset															Bi	t Pc	ositi	on						·								
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	ø	~	9	5	4	e	2	-	0
Reset	0	-				1	Xõ				-	_			0	0							0x0				0X0		0	0	0	0
Access	КŇ	RV					 ≩ ⊻			_					RV	RV							RV	_			RV		RV	RV	RW	RV
Name	FULLBIAS	HALFBIAS					BIASPROG								IFALL	IRISE							WARMTIME				HYSTSEL		GPIOINV	INACTVAL	MUXEN	R
Bit	Na	me						Re	eset			/	٩cc	ess	;	De	scr	ipti	on													
31	FU	LLBI	AS					0				F	RW			Ful	l Bia	as C	urre	ent												
	Set	this	bit t	o 1 f	or fu	ıll b	ias	curre	ent in	ac	cord	ance	e with	n Ta	ble 2	26.1	(p. 6	671)														
30	HA	LFBI	IAS					1				F	RW			Ha	f Bi	as C	urr	ent												
	Set	this	bit t	o 1 te	o ha	alve	the	bias	curi	rent	in a	ccor	dano	ce w	ith T	able	26.	1 (p.	671	I).												
29:28	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 BIASPROG 0x7 RW Bias Configuration															.1 (p	o. 3)															
27:24	BIA	SPF	ROG					0x7	7			F	RW	V Bias Configuration																		
	The	ese b	oits c	ontro	ol th	e bi	ias	curre	ent le	evel	in ad	cord	danc	nce with Table 26.1 (p. 671) .																		
23:18	Re	serve	ed					То	ens	ure	com	patik	oility	with future devices, always write bits to 0. More information in Section 2.1 (p. 3														o. 3)				
17	IFA	LL						0				F	RW																			
	Set	this	bit t	o 1 te	o se	et th	e E	DGE	inte	rrup	ot fla	g on	falliı	ling edges of comparator output.																		
	Va	lue			N	lode								0	Descr	iption	1															
	0				D	ISA	BLE	D						I	nterru	upt fla	ıg is	not s	et or	n falli	ing e	dges	3.									
	1				E	NAE	BLEI	D						I	nterru	upt fla	ig is	set o	n fal	ling e	edge	s.										
16	IRI	SE						0				F	RM			Ris	ing	Edg	e In	terr	upt	Ser	nse									
	Set	this	bit t	o 1 t	o se	et th	e E	DGE	inte	rrup	ot fla	g on	risir	ig e	dges	of c	omp	parat	or o	utpu	ut.											
	Va	lue			N	lode								0	Descr	iption	1															
	0				D	ISA	BLE	D						I	nterru	upt fla	ıg is	not s	et or	n risii	ng eo	dges	•									
	1				E	NAE	BLEI	D						I	nterru	upt fla	ig is	set o	n ris	ing e	dges	3.										
15:11	Re	serve	ed					То	ens	ure	com	patik	oility	with	n futu	ire d	evice	es, a	lwaj	ys w	vrite	bits	to 0.	Mor	e inf	orma	atior	n in S	Secti	ion 2	.1 (p	o. 3)
10:8	WA	RM	TIME					0x0)			F	RW			Wa	rm-	up T	ïme													
	Set	ana	log d	comp	oara	tor	war	m-up	tim	e.																						