
Silicon Labs - EFM32GG995F1024G-E-BGA120 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 48MHz

Connectivity EBI/EMI, I²C, IrDA, SmartCard, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 93

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.98V ~ 3.8V

Data Converters A/D 8x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 120-VFBGA

Supplier Device Package 120-BGA (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/efm32gg995f1024g-e-bga120

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/efm32gg995f1024g-e-bga120-4394759
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 52 www.silabs.com

Channel

number

Priority level

setting

Descending order of

channel priority

1 High -

2 High -

3 High -

4 High -

5 High -

6 High -

7 High -

8 High -

9 High -

10 High -

11 High -

0 Default -

1 Default -

2 Default -

3 Default -

4 Default -

5 Default -

6 Default -

7 Default -

8 Default -

9 Default -

10 Default -

11 Default Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. Figure 8.2 (p.
53) shows the process it uses to determine which DMA transfer to perform next.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 62 www.silabs.com

• have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 8.6 (p. 62) shows the memory that the controller requires for the channel control data structure,
when all 12 channels and the optional alternate data structure are in use.

Figure 8.6. Memory map for 12 channels, including the alternate data structure

Primary_Ch_0

Primary_Ch_1

Primary_Ch_2

Primary_Ch_3

Primary_Ch_4

Primary_Ch_5

Primary_Ch_6

Primary_Ch_7

0x000
0x010

0x050

0x080
0x070
0x060

0x040
0x030
0x020

Alternate_Ch_0

Alternate_Ch_1

Alternate_Ch_2

Alternate_Ch_3

Alternate_Ch_4

Alternate_Ch_5

Alternate_Ch_6

Alternate_Ch_7

0x100
0x110

0x150

0x180
0x170
0x160

0x140
0x130
0x120

Destinat ion End Pointer

Source End Pointer

Control

User

0x000
0x004
0x008
0x00C

Alternate data structure Primary data structure

Primary_Ch_8

Primary_Ch_9

Primary_Ch_10

Primary_Ch_11

0x090

0x0C0
0x0B0
0x0A0

Alternate_Ch_8

Alternate_Ch_9

Alternate_Ch_10

Alternate_Ch_11

0x190

0x1C0
0x1B0
0x1A0

This structure in Figure 8.6 (p. 62) uses 384 bytes of system memory. The controller uses the lower
8 address bits to enable it to access all of the elements in the structure and therefore the base address
must be at 0xXXXXXX00.

You can configure the base address for the primary data structure by writing the appropriate value in
the DMA_CTRLBASE register.

You do not need to set aside the full 384 bytes if all dma channels are not used or if all alternate
descriptors are not used. If, for example, only 4 channels are used and they only need the primary
descriptors, then only 64 bytes need to be set aside.

Table 8.6 (p. 62) lists the address bits that the controller uses when it accesses the elements of the
channel control data structure.

Table 8.6. Address bit settings for the channel control data structure

Address bits

[8] [7] [6] [5] [4] [3:0]

A C[3] C[2] C[1] C[0] 0x0, 0x4, or 0x8

Where:

A Selects one of the channel control data structures:
A = 0 Selects the primary data structure.
A = 1 Selects the alternate data structure.

C[3:0] Selects the DMA channel.

Address[3:0] Selects one of the control elements:
0x0 Selects the source data end pointer.
0x4 Selects the destination data end pointer.
0x8 Selects the control data configuration.
0xC The controller does not access this address location. If required, you can

enable the host processor to use this memory location as system memory.

Note
It is not necessary for you to calculate the base address of the alternate data structure
because the DMA_ALTCTRLBASE register provides this information.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 78 www.silabs.com

8.7.9 DMA_CHREQMASKS - Channel Request Mask Set Register

Offset Bit Position

0x020 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0

Access

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

R
W

1

Name

C
H

11
R

E
Q

M
A

S
K

S

C
H

10
R

E
Q

M
A

S
K

S

C
H

9R
E

Q
M

A
S

K
S

C
H

8R
E

Q
M

A
S

K
S

C
H

7R
E

Q
M

A
S

K
S

C
H

6R
E

Q
M

A
S

K
S

C
H

5R
E

Q
M

A
S

K
S

C
H

4R
E

Q
M

A
S

K
S

C
H

3R
E

Q
M

A
S

K
S

C
H

2R
E

Q
M

A
S

K
S

C
H

1R
E

Q
M

A
S

K
S

C
H

0R
E

Q
M

A
S

K
S

Bit Name Reset Access Description

31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

11 CH11REQMASKS 0 RW1 Channel 11 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

10 CH10REQMASKS 0 RW1 Channel 10 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

9 CH9REQMASKS 0 RW1 Channel 9 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

8 CH8REQMASKS 0 RW1 Channel 8 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

7 CH7REQMASKS 0 RW1 Channel 7 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

6 CH6REQMASKS 0 RW1 Channel 6 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

5 CH5REQMASKS 0 RW1 Channel 5 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

4 CH4REQMASKS 0 RW1 Channel 4 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

3 CH3REQMASKS 0 RW1 Channel 3 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

2 CH2REQMASKS 0 RW1 Channel 2 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

1 CH1REQMASKS 0 RW1 Channel 1 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

0 CH0REQMASKS 0 RW1 Channel 0 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 160 www.silabs.com

12.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL.
The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bit in WDOG_CTRL can be
written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start
the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOG_CTRL is used
to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

WDOG Timeout Equation

TTIMEOUT = (23+PERSEL + 1)/f, (12.1)

where f is the frequency of the selected clock.

It is recommended to clear the watchdog first, if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to
the module clock.

Note
Before changing the clock source for WDOG, the EN bit in WDOG_CTRL should be
cleared. In addition to this, the WDOG_SYNCBUSY value should be zero.

12.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This
configuration is done through the DEBUGRUN bit in WDOG_CTRL. When code execution is resumed,
the watchdog will continue counting where it left off.

12.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3.
The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in
WDOG_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is
running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference
between EM0 and EM1. The watchdog does not run in EM4, and if EM4BLOCK in WDOG_CTRL is set,
the CPU is prevented from entering EM4.

Note
If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will
effectively prevent the CPU from entering EM3. When running from the ULFRCO, writing
the SWOSCBLOCK bit will prevent the CPU from entering EM4.

12.3.4 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to
the HFCORECLK, special considerations must be taken when accessing registers. Please refer to
Section 5.3 (p. 20) for a description on how to perform register accesses to Low Energy Peripherals.
note that clearing the EN bit in WDOG_CTRL will reset the WDOG module, which will halt any ongoing
register synchronization.

Note
Never write to the WDOG registers when it is disabled, except to enable it by setting
WDOG_CTRL_EN or when changing the clock source using WDOG_CTRL_CLKSEL.
Make sure that the enable is registered (i.e. WDOG_SYNCBUSY_CTRL goes low), before
writing other registers.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 191 www.silabs.com

Figure 14.24. EBI Alternative Memory Map (ALTMAP = 1)

EBI Region 0 (32 MB)

Code

0x00000000

0x1fffffff

EBI Regions

0x80000000

0xbfffffff

0xc0000000

0xffffffff

0x20000000

0x7fffffff

0x12000000

EBI Region 1 (32 MB)

EBI Region 2 (32 MB)

0x13ffffff
0x14000000
0x15ffffff
0x16000000
0x17ffffff
0x18000000

0x1fffffff

EBI Region 3 (128 MB)

EBI Region 0 (256 MB)

0x80000000

EBI Region 2 (256 MB)

EBI Region 1 (256 MB)

0x8fffffff
0x90000000

0x9fffffff
0xa0000000

0xafffffff
0xb0000000

0xbfffffff

EBI Region 3 (256 MB)

0x12000000

14.3.13 WAIT/ARDY.

Some external devices are able to indicate that they are not finished with either write or read operation
by asserting the WAIT / ARDY line. This input signal is used to extend the REn/WEn cycles for slow
devices. The interpretation of the polarity of this signal can be configured with the ARDYPOL bit in
EBI_POLARITY. E.g. if the ARDYPOL is set to ACTIVELOW, then the REn/WEn cycle is extended
while the ARDY line is kept low. The ARDY functionality is enabled by setting the ARDYEN bit in the
EBI_CTRL register. It is also possible to enable a timeout check, which generates a bus error if the ARDY
is not deasserted within the timeout period. This prevents a system lock up condition in the case that the
external device does not deassert ARDY. The timeout functionality is disabled by setting ARDYTODIS
in the EBI_CTRL register.

When the ITS bitfield in the EBI_CTRL register is set to 0, the wait behavior defined in the ARDYEN and
ARDYTODIS bitfields applies to all 4 memory banks. When ITS is set to 1 each memory bank uses an
individual wait behavior definition. In this case bitfields ARDYEN and ARDYTODIS only apply to bank
0. Wait behavior for bank n is then defined in the ARDYnEN and ARDYTOnDIS bitfields.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 311 www.silabs.com

6. If the application sets or clears a STALL for an endpoint due to a SetFeature.Endpoint Halt command
or ClearFeature.Endpoint Halt command, the Stall bit must be set or cleared before the application
sets up the Status stage transfer on the control endpoint.

Special Case: Stalling the Control IN/OUT Endpoint

The core must stall IN/OUT tokens if, during the Data stage of a control transfer, the host sends more
IN/OUT tokens than are specified in the SETUP packet. In this case, the application must to enable
USB_DIEPx_INT.INTKNTXFEMP and USB_DOEPx_INT.OUTTKNEPDIS interrupts during the Data
stage of the control transfer, after the core has transferred the amount of data specified in the SETUP
packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding
endpoint control register, and clear this interrupt.

15.4.4.2.3.8 Worst-Case Response Time

When the acts as a device, there is a worst case response time for any tokens that follow an isochronous
OUT. This worst case response time depends on the AHB clock frequency.

The core registers are in the AHB domain, and the core does not accept another token before updating
these register values. The worst case is for any token following an isochronous OUT, because for an
isochronous transaction, there is no handshake and the next token could come sooner. This worst case
value is 7 PHY clocks in FS mode.

If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops
isochronous and SETUP tokens. The host interprets this as a timeout condition for SETUP and retries
the SETUP packet. For isochronous transfers, the INCOMPISOIN and INCOMPLP interrupts inform the
application that isochronous IN/OUT packets were dropped.

15.4.4.2.3.9 Choosing the Value of USB_GUSBCFG.USBTRDTIM

The value in USB_GUSBCFG.USBTRDTIM is the time it takes for the MAC, in terms of PHY clocks
after it has received an IN token, to get the FIFO status, and thus the first data from PFC (Packet FIFO
Controller) block. This time involves the synchronization delay between the PHY and AHB clocks. This
delay is 5 clocks.

Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock
by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from the SPRAM and writes
it into the dual clock source buffer. The MAC then reads the data out of the source buffer (4 deep).

If the AHB is running at a higher frequency than the PHY (in Low-speed mode), the application can use
a smaller value for USB_GUSBCFG.USBTRDTIM. Figure 15.26 (p. 312) explains the 5-clock delay.
This diagram has the following signals:

• tkn_rcvd: Token received information from MAC to PFC
• dynced_tkn_rcvd: Doubled sync tkn_rcvd, from pclk to hclk domain
• spr_read: Read to SPRAM
• spr_addr: Address to SPRAM
• spr_rdata: Read data from SPRAM
• srcbuf_push: Push to the source buffer
• srcbuf_rdata: Read data from the source buffer. Data seen by MAC

The application can use the following formula to calculate the value of USB_GUSBCFG.USBTRDTIM:

4 * AHB Clock + 1 PHY Clock = (2 clock sync + 1 clock memory address + 1 clock memory data from
sync RAM) + (1 PHY Clock (next PHY clock MAC can sample the 2-clock FIFO output)

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 381 www.silabs.com

Bit Name Reset Access Description

1 CHHLTD 0 RW1H Channel Halted

In DMA mode this bit indicates the transfer completed abnormally either because of any USB transaction error or in response to
disable request by the application or because of a completed transfer.

0 XFERCOMPL 0 RW1H Transfer Completed

Transfer completed normally without any errors. This bit can be set only by the core and the application should write 1 to clear it.

15.6.37 USB_HCx_INTMSK - Host Channel x Interrupt Mask Register

This register reflects the mask for each channel status described in the USB_CHx_INT.

Offset Bit Position

0x3C50C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0

Access

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Name

D
A

T
A

T
G

LE
R

R
M

S
K

F
R

M
O

V
R

U
N

M
S

K

B
B

LE
R

R
M

S
K

X
A

C
T

E
R

R
M

S
K

A
C

K
M

S
K

N
A

K
M

S
K

S
T

A
LL

M
S

K

A
H

B
E

R
R

M
S

K

C
H

H
LT

D
M

S
K

X
F

E
R

C
O

M
P

LM
S

K

Bit Name Reset Access Description

31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

10 DATATGLERRMSK 0 RW Data Toggle Error Mask

Set to unmask DATATGLERR interrupt.

9 FRMOVRUNMSK 0 RW Frame Overrun Mask

Set to unmask FRMOVRUN interrupt.

8 BBLERRMSK 0 RW Babble Error Mask

Set to unmask BBLERR interrupt.

7 XACTERRMSK 0 RW Transaction Error Mask

Set to unmask XACTERR interrupt.

6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 ACKMSK 0 RW ACK Response Received/Transmitted Interrupt Mask

Set to unmask ACK interrupt.

4 NAKMSK 0 RW NAK Response Received Interrupt Mask

Set to unmask NAK interrupt.

3 STALLMSK 0 RW STALL Response Received Interrupt Mask

Set to unmask STALL interrupt.

2 AHBERRMSK 0 RW AHB Error Mask

Set to unmask AHBERR interrupt.

1 CHHLTDMSK 0 RW Channel Halted Mask

Set to unmask CHHLTD interrupt.

0 XFERCOMPLMSK 0 RW Transfer Completed Mask

Set to unmask XFERCOMPL interrupt.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 427 www.silabs.com

I2Cn_STATEDescription I2Cn_IF Required
interaction

Response

START Repeated start condition will be sent

STOP +
START

STOP will be sent and the bus released. Then
a START will be sent when the bus becomes
idle

- Data transmitted TXBL interrupt flag
(TXC interrupt flag)

None

TXDATA DATA will be sent

STOP STOP will be sent. Bus will be released

START Repeated start condition will be sent

0xD7 Data transmitted,ACK
received

ACK interrupt flag
(BUSHOLD interrupt
flag)

STOP +
START

STOP will be sent and the bus released. Then
a START will be sent when the bus becomes
idle

CONT +
TXDATA

DATA will be sent

STOP STOP will be sent. Bus will be released

START Repeated start condition will be sent

0xDF Data
transmitted,NACK
received

NACK(BUSHOLD
interrupt flag)

STOP +
START

STOP will be sent and the bus released. Then
a START will be sent when the bus becomes
idle

None - Stop transmitted MSTOP interrupt flag

START START will be sent when bus becomes idle

None - Arbitration lost ARBLOST interrupt
flag

START START will be sent when bus becomes idle

16.3.7.5 Master Receiver

To receive data from a slave, the master must operate as a master receiver, see Table 16.6 (p. 428) .
This is done by transmitting ADDR+R as the address byte instead of ADDR+W, which is transmitted to
become a master transmitter. The address byte loaded into the data register thus has to contain the 7-
bit slave address in the 7 most significant bits of the byte, and have the least significant bit set.

When the address has been transmitted, the master receives an ACK or a NACK. If an ACK is received,
the ACK interrupt flag in I2Cn_IF is set, and if space is available in the receive shift register, reception
of a byte from the slave begins. If the receive buffer and shift register is full however, the bus is held
until data is read from the receive buffer or another interaction is made. Note that the STOP and START
interactions have a higher priority than the data-available interaction, so if a STOP or START command
is pending, the highest priority interaction will be performed, and data will not be received from the slave.

If a NACK was received, the CONT command in I2Cn_CMD has to be issued in order to continue
receiving data, even if there is space available in the receive buffer and/or shift register.

After a data byte has been received the master must ACK or NACK the received byte. If an ACK is
pending or AUTOACK in I2Cn_CTRL is set, an ACK is sent automatically and reception continues if
space is available in the receive buffer.

If a NACK is sent, the CONT command must be used in order to continue transmission. If an ACK
or NACK is issued along with a START or STOP or both, then the ACK/NACK is transmitted and the
reception is ended. If START in I2Cn_CMD is set alone, a repeated start condition is transmitted after
the ACK/NACK. If STOP in I2Cn_CMD is set, a stop condition is sent regardless of whether START is
set. If START is set in this case, it is set as pending.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 456 www.silabs.com

• Tristate transmitter after transmission: If TXTRIAT is set, TXTRI is set after the frame has been
fully transmitted, tristating the transmitter output. Tristating of the output can also be performed
automatically by setting AUTOTRI. If AUTOTRI is set TXTRI is always read as 0.

Note
When in SmartCard mode with repeat enabled, none of the actions, except generate break,
will be performed until the frame is transmitted without failure. Generation of a break in
SmartCard mode with repeat enabled will cause the USART to detect a NACK on every
frame.

17.3.2.4 Data Reception

Data reception is enabled by setting RXEN in USARTn_CMD. When the receiver is enabled, it actively
samples the input looking for a transition from high to low indicating the start baud of a new frame. When
a start baud is found, reception of the new frame begins if the receive shift register is empty and ready
for new data. When the frame has been received, it is pushed into the receive buffer, making the shift
register ready for another frame of data, and the receiver starts looking for another start baud. If the
receive buffer is full, the received frame remains in the shift register until more space in the receive
buffer is available. If an incoming frame is detected while both the receive buffer and the receive shift
register are full, the data in the shift register is overwritten, and the RXOF interrupt flag in USARTn_IF
is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in USARTn_CMD. Any frame currently
being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a
given time can be read out from RXENS in USARTn_STATUS.

17.3.2.4.1 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in USARTn_STATUS, and
the RXDATAV interrupt flag in USARTn_IF are set, and when the buffer becomes full, RXFULL in
USARTn_STATUS and the RXFULL interrupt flag in USARTn_IF are set. The status flags RXDATAV
and RXFULL are automatically cleared by hardware when their condition is no longer true. This also
goes for the RXDATAV interrupt flag, but the RXFULL interrupt flag must be cleared by software. When
the RXFULL flag is set, notifying that the buffer is full, space is still available in the receive shift register
for one more frame.

Data can be read from the receive buffer in a number of ways. USARTn_RXDATA gives access to the
8 least significant bits of the received frame, and USARTn_RXDOUBLE makes it possible to read the 8
least significant bits of two frames at once, pulling two frames from the buffer. To get access to the 9th,
most significant bit, USARTn_RXDATAX must be used. This register also contains status information
regarding the frame. USARTn_RXDOUBLEX can be used to get two frames complete with the 9th bits
and status bits.

When a frame is read from the receive buffer using USARTn_RXDATA or USARTn_RXDATAX,
the frame is pulled out of the buffer, making room for a new frame. USARTn_RXDOUBLE and
USARTn_RXDOUBLEX pull two frames out of the buffer. If an attempt is done to read more frames from
the buffer than what is available, the RXUF interrupt flag in USARTn_IF is set to signal the underflow,
and the data read from the buffer is undefined.

Frames can be read from the receive buffer without removing the data by using USARTn_RXDATAXP
and USARTn_RXDOUBLEXP. USARTn_RXDATAXP gives access the first frame in the buffer with
status bits, while USARTn_RXDOUBLEXP gives access to both frames with status bits. The data read
from these registers when the receive buffer is empty is undefined. If the receive buffer contains one
valid frame, the first frame in USARTn_RXDOUBLEXP will be valid. No underflow interrupt is generated
by a read using these registers, i.e. RXUF in USARTn_IF is never set as a result of reading from
USARTn_RXDATAXP or USARTn_RXDOUBLEXP.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 468 www.silabs.com

When AUTOTX in USARTn_CTRL is set, the USART transmits data as long as there is available space
in the RX shift register for the chosen frame size. This happens even though there is no data in the TX
buffer. The TX underflow interrupt flag TXUF in USARTn_IF is set on the first word that is transmitted
which does not contain valid data.

During AUTOTX the USART will always send the previous sent bit, thus reducing the number of
transitions on the TX output. So if the last bit sent was a 0, 0's will be sent during AUTOTX and if the
last bit sent was a 1, 1's will be sent during AUTOTX.

17.3.3.4 Slave Mode

When the USART is in slave mode, data transmission is not controlled by the USART, but by an external
master. The USART is therefore not able to initiate a transmission, and has no control over the number
of bytes written to the master.

The output and input to the USART are also swapped when in slave mode, making the receiver take its
input from USn_TX (MOSI) and the transmitter drive USn_RX (MISO).

To transmit data when in slave mode, the slave must load data into the transmit buffer and enable the
transmitter. The data will remain in the USART until the master starts a transmission by pulling the
USn_CS input of the slave low and transmitting data. For every frame the master transmits to the slave,
a frame is transferred from the slave to the master. After a transmission, MISO remains in the same
state as the last bit transmitted. This also applies if the master transmits to the slave and the slave TX
buffer is empty.

If the transmitter is enabled in synchronous slave mode and the master starts transmission of a frame,
the underflow interrupt flag TXUF in USARTn_IF will be set if no data is available for transmission to
the master.

If the slave needs to control its own chip select signal, this can be achieved by clearing CSPEN in the
ROUTE register. The internal chip select signal can then be controlled through CSINV in the CTRL
register. The chip select signal will be CSINV inverted, i.e. if CSINV is cleared, the chip select is active
and vice versa.

17.3.3.5 Synchronous Half Duplex Communication

Half duplex communication in synchronous mode is very similar to half duplex communication in
asynchronous mode as detailed in Section 17.3.2.6 (p. 460) . The main difference is that in this mode,
the master must generate the bus clock even when it is not transmitting data, i.e. it must provide the
slave with a clock to receive data. To generate the bus clock, the master should transmit data with the
transmitter tristated, i.e. TXTRI in USARTn_STATUS set, when receiving data. If 2 bytes are expected
from the slave, then transmit 2 bytes with the transmitter tristated, and the slave uses the generated
bus clock to transmit data to the master. TXTRI can be set by setting the TXTRIEN command bit in
USARTn_CMD.

Note
When operating as SPI slave in half duplex mode, TX has to be tristated (not disabled)
during data reception if the slave is to transmit data in the current transfer.

17.3.3.6 I2S

I2S is a synchronous format for transmission of audio data. The frame format is 32-bit, but since data is
always transmitted with MSB first, an I2S device operating with 16-bit audio may choose to only process
the 16 msb of the frame, and only transmit data in the 16 msb of the frame.

In addition to the bit clock used for regular synchronous transfers, I2S mode uses a separate word clock.
When operating in mono mode, with only one channel of data, the word clock pulses once at the start of
each new word. In stereo mode, the word clock toggles at the start of new words, and also gives away

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 478 www.silabs.com

Bit Name Reset Access Description

Value Mode Description

1 X8 Double speed with 8X oversampling in asynchronous mode

2 X6 6X oversampling in asynchronous mode

3 X4 Quadruple speed with 4X oversampling in asynchronous mode

4 MPAB 0 RW Multi-Processor Address-Bit

Defines the value of the multi-processor address bit. An incoming frame with its 9th bit equal to the value of this bit marks the frame
as a multi-processor address frame.

3 MPM 0 RW Multi-Processor Mode

Multi-processor mode uses the 9th bit of the USART frames to tell whether the frame is an address frame or a data frame.

Value Description

0 The 9th bit of incoming frames has no special function

1 An incoming frame with the 9th bit equal to MPAB will be loaded into the receive buffer regardless of RXBLOCK and
will result in the MPAB interrupt flag being set

2 CCEN 0 RW Collision Check Enable

Enables collision checking on data when operating in half duplex modus.

Value Description

0 Collision check is disabled

1 Collision check is enabled. The receiver must be enabled for the check to be performed

1 LOOPBK 0 RW Loopback Enable

Allows the receiver to be connected directly to the USART transmitter for loopback and half duplex communication.

Value Description

0 The receiver is connected to and receives data from U(S)n_RX

1 The receiver is connected to and receives data from U(S)n_TX

0 SYNC 0 RW USART Synchronous Mode

Determines whether the USART is operating in asynchronous or synchronous mode.

Value Description

0 The USART operates in asynchronous mode

1 The USART operates in synchronous mode

17.5.2 USARTn_FRAME - USART Frame Format Register

Offset Bit Position

0x004 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset

0x
1

0x
0

0x
5

Access

R
W

R
W

R
W

Name

S
T

O
P

B
IT

S

P
A

R
IT

Y

D
A

T
A

B
IT

S

Bit Name Reset Access Description

31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

13:12 STOPBITS 0x1 RW Stop-Bit Mode

Determines the number of stop-bits used.

Value Mode Description

0 HALF The transmitter generates a half stop bit. Stop-bits are not verified by receiver

1 ONE One stop bit is generated and verified

2 ONEANDAHALF The transmitter generates one and a half stop bit. The receiver verifies the first stop bit

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 505 www.silabs.com

When 8 data-bit frame formats are used, only the 8 least significant bits of LEUARTn_STARTFRAME
are compared to incoming frames. The full length of LEUARTn_STARTFRAME is used when operating
with frames consisting of 9 data bits.

Note
The receiver must be enabled for start frames to be detected. In addition, a start frame with
a parity error or framing error is not detected as a start frame.

19.3.5.7 Programmable Signal Frame

As well as the configurable start frame, a special signal frame can be specified. When a frame matching
the frame defined in LEUARTn_SIGFRAME is detected by the receiver, the SIGF interrupt flag in
LEUARTn_IF is set. As for start frame detection, the receiver must be enabled for signal frames to be
detected.

One use of the programmable signal frame is to signal the end of a multi-frame message transmitted to
the LEUART. An interrupt will then be triggered when the packet has been completely received, allowing
software to process it. Used in conjunction with the programmable start frame and DMA, this makes it
possible for the LEUART to automatically begin the reception of a packet on a specified start frame,
load the entire packet into memory, and give an interrupt when reception of a packet has completed.
The device can thus wait for data packets in EM2, and only be woken up when a packet has been
completely received.

A signal frame with a parity error or framing error is not detected as a signal frame.

19.3.5.8 Multi-Processor Mode

To simplify communication between multiple processors and maintain compatibility with the USART, the
LEUART supports a multi-processor mode. In this mode the 9th data bit in each frame is used to indicate
whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of
MPAB in LEUARTn_CTRL is identified as an address frame. When an address frame is detected, the
MPAF interrupt flag in LEUARTn_IF is set, and the address frame is loaded into the receive register.
This happens regardless of the value of RXBLOCK in LEUARTn_STATUS.

Multi-processor mode is enabled by setting MPM in LEUARTn_CTRL. The mode can be used in buses
with multiple slaves, allowing the slaves to be addressed using the special address frames. An addressed
slave, which was previously blocking reception using RXBLOCK, would then unblock reception, receive
a message from the bus master, and then block reception again, waiting for the next message. See the
USART for a more detailed example.

Note
The programmable start frame functionality can be used for automatic address matching,
enabling reception on a correctly configured incoming frame.

An address frame with a parity error or a framing error is not detected as an address frame.

19.3.6 Loopback

The LEUART receiver samples LEUn_RX by default, and the transmitter drives LEUn_TX by default.
This is not the only configuration however. When LOOPBK in LEUARTn_CTRL is set, the receiver is
connected to the LEUn_TX pin as shown in Figure 19.5 (p. 506) . This is useful for debugging, as the
LEUART can receive the data it transmits, but it is also used to allow the LEUART to read and write to
the same pin, which is required for some half duplex communication modes. In this mode, the LEUn_TX
pin must be enabled as an output in the GPIO.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 600 www.silabs.com

Bit Name Reset Access Description

Value Description

1 A compare match on RTC compare channel 1 starts the LETIMER if the LETIMER is not already started

10 RTCC0TEN 0 RW RTC Compare 0 Trigger Enable

Allows the LETIMER to be started on a compare match on RTC compare channel 0.

Value Description

0 LETIMER is not affected by RTC compare channel 0

1 A compare match on RTC compare channel 0 starts the LETIMER if the LETIMER is not already started

9 COMP0TOP 0 RW Compare Value 0 Is Top Value

When set, the counter is cleared in the clock cycle after a compare match with compare channel 0.

Value Description

0 The top value of the LETIMER is 65535 (0xFFFF)

1 The top value of the LETIMER is given by COMP0

8 BUFTOP 0 RW Buffered Top

Set to load COMP1 into COMP0 when REP0 reaches 0, allowing a buffered top value

Value Description

0 COMP0 is only written by software

1 COMP0 is set to COMP1 when REP0 reaches 0

7 OPOL1 0 RW Output 1 Polarity

Defines the idle value of output 1.

6 OPOL0 0 RW Output 0 Polarity

Defines the idle value of output 0.

5:4 UFOA1 0x0 RW Underflow Output Action 1

Defines the action on LETn_O1 on a LETIMER underflow.

Value Mode Description

0 NONE LETn_O1 is held at its idle value as defined by OPOL1.

1 TOGGLE LETn_O1 is toggled on CNT underflow.

2 PULSE LETn_O1 is held active for one LFACLKLETIMER0 clock cycle on CNT underflow. The
output then returns to its idle value as defined by OPOL1.

3 PWM LETn_O1 is set idle on CNT underflow, and active on compare match with COMP1

3:2 UFOA0 0x0 RW Underflow Output Action 0

Defines the action on LETn_O0 on a LETIMER underflow.

Value Mode Description

0 NONE LETn_O0 is held at its idle value as defined by OPOL0.

1 TOGGLE LETn_O0 is toggled on CNT underflow.

2 PULSE LETn_O0 is held active for one LFACLKLETIMER0 clock cycle on CNT underflow. The
output then returns to its idle value as defined by OPOL0.

3 PWM LETn_O0 is set idle on CNT underflow, and active on compare match with COMP1

1:0 REPMODE 0x0 RW Repeat Mode

Allows the repeat counter to be enabled and disabled.

Value Mode Description

0 FREE When started, the LETIMER counts down until it is stopped by software.

1 ONESHOT The counter counts REP0 times. When REP0 reaches zero, the counter stops.

2 BUFFERED The counter counts REP0 times. If REP1 has been written, it is loaded into REP0 when
REP0 reaches zero. Else the counter stops

3 DOUBLE Both REP0 and REP1 are decremented when the LETIMER wraps around. The
LETIMER counts until both REP0 and REP1 are zero

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 602 www.silabs.com

23.5.4 LETIMERn_CNT - Counter Value Register

Offset Bit Position

0x00C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset

0x
00

00

Access

R
W

H

Name

C
N

T

Bit Name Reset Access Description

31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

15:0 CNT 0x0000 RWH Counter Value

Use to read the current value of the LETIMER.

23.5.5 LETIMERn_COMP0 - Compare Value Register 0 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20) .

Offset Bit Position

0x010 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset

0x
00

00

Access

R
W

Name

C
O

M
P

0

Bit Name Reset Access Description

31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

15:0 COMP0 0x0000 RW Compare Value 0

Compare and optionally top value for LETIMER

23.5.6 LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20) .

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 635 www.silabs.com

Figure 25.10. Capacitive sense setup

EFM32

ACMP0_CH0

ACMP0_CH1

ACMP0_CH2

ACMP0_CH3

The following steps show how to configure LESENSE to scan through the four buttons 100 times per
second, issuing an interrupt if one of them is pressed.

1. Assuming LFACLKLESENSE is 32kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will make
the LESENSE scan frequency 100Hz.

2. Enable channels 0 through 3 in CHEN and set IDLECONF for these channels to DISABLED. In
capacitive sense mode, the GPIO should always be disabled (analog input).

3. Configure the ACMP to operate in CAPSENSE mode, refer to Section 26.3.5 (p. 672) for details.
4. Configure the following bit fields in CHx_CONF, for channels 0 through 3:

a. Set EXTIME to 0. No excitation is needed in this mode.
b. Set SAMPLE to COUNTER and COMP to LESS. This makes LESENSE interpret a sensor as

active if the frequency on a channel drops below the threshold, i.e. the button is pressed.
c. Set SAMPLEDLY to an appropriate value, each sensor will be measured for SAMPLEDLY/

LFACLKLESENSE seconds. MEASUREDLY should be set to 0
5. Set CTRTHRESHOLD to an appropriate value. An interrupt will be issued if the counter value for a

sensor is below this threshold after the measurement phase.
6. Enable interrupts on channels 0 through 3.
7. Start scan sequence by writing a 1 to START in CMD.

In a capacitive sense application, it might be required to calibrate the threshold values on a periodic
basis, this is done in order to compensate for humidity and other physical variations. LESENSE is able
to store up to 16 counter values from a configurable number of channels, making it possible to collect
sample data while in EM2. When calibration is to be performed, the CPU only has to be woken up for a
short period of time as the data to be processed already lies in the result registers. To enable storing of
the count value for a channel, set STRSAMPLE in the CHx_INTERACT register.

25.3.14.2 LC sensor

Figure 25.11 (p. 635) below illustrates how the EFM32GG can be set up to monitor four LC sensors.

Figure 25.11. LC sensor setup

EFM32

ACMP0_CH0

ACMP0_CH1

ACMP0_CH2

DAC0_OUT0

X

X X

X

ACMP0_CH3

LESENSE can be used to excite and measure the damping factor in LC sensor oscillations. To measure
the damping factor, the ACMP can be used to generate a high output each time the sensor voltage

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 664 www.silabs.com

Bit Name Reset Access Description

15 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

14:12 PRSACT 0xX RW Configure transition action

Configure which action to perform when sensor state equals COMP

DECCTRL_PRSCNT = 0

Mode Value Description

NONE 0 No PRS pulses generated

PRS0 1 Generate pulse on LESPRS0

PRS1 2 Generate pulse on LESPRS1

PRS01 3 Generate pulse on LESPRS0 and LESPRS1

PRS2 4 Generate pulse on LESPRS2

PRS02 5 Generate pulse on LESPRS0 and LESPRS2

PRS12 6 Generate pulse on LESPRS1 and LESPRS2

PRS012 7 Generate pulse on LESPRS0, LESPRS1 and LESPRS2

DECCTRL_PRSCNT = 1

NONE 0 Do not count

UP 1 Count up

DOWN 2 Count down

PRS2 4 Generate pulse on LESPRS2

UPANDPRS2 5 Count up and generate pulse on LESPRS2.

DOWNANDPRS2 6 Count down and generate pulse on LESPRS2.

11:8 NEXTSTATE 0xX RW Next state index

Index of next state to be entered if the sensor state equals COMP

7:4 MASK 0xX RW Sensor mask

Set bit X to exclude sensor X from evaluation.

3:0 COMP 0xX RW Sensor compare value

State transition is triggered when sensor state equals COMP

25.5.25 LESENSE_STx_TCONFB - State transition configuration B (Async
Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20) .

Offset Bit Position

0x204 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset X 0x
X

0x
X

0x
X

0x
X

Access

R
W

R
W

R
W

R
W

R
W

Name

S
E

T
IF

P
R

S
A

C
T

N
E

X
T

S
T

A
T

E

M
A

S
K

C
O

M
P

Bit Name Reset Access Description

31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

16 SETIF X RW Set interrupt flag

Set interrupt flag when sensor state equals COMP

15 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

14:12 PRSACT 0xX RW Configure transition action

Configure which action to perform when sensor state equals COMP

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 729 www.silabs.com

Bit Name Reset Access Description

11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

10:8 RESINMUX 0x0 RW OPA0 Resistor Ladder Input Mux

These bits selects the source for the input mux to the resistor ladder

Value Mode Description

0 DISABLE Set for Unity Gain

1 OPA0INP Set for OPA0 input

2 NEGPAD NEG pad connected

3 POSPAD POS pad connected

4 VSS VSS connected

7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5:4 NEGSEL 0x0 RW OPA0 inverting Input Mux

These bits selects the source for the inverting input on OPA0

Value Mode Description

0 DISABLE Input disabled

1 UG Unity Gain feedback path

2 OPATAP OPA0 Resistor ladder as input

3 NEGPAD Input from NEG PAD

3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2:0 POSSEL 0x0 RW OPA0 non-inverting Input Mux

These bits selects the source for the non-inverting input on OPA0

Value Mode Description

0 DISABLE Input disabled

1 DAC DAC as input

2 POSPAD POS PAD as input

3 OPA0INP OPA0 as input

4 OPATAP OPA0 Resistor ladder as input

29.5.17 DACn_OPA1MUX - Operational Amplifier Mux Configuration
Register
Offset Bit Position

0x060 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset

0x
0 0 0x
0

0x
00 0 0 0x
0

0x
0

0x
0

Access

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Name

R
E

S
S

E
L

N
E

X
T

O
U

T

O
U

T
M

O
D

E

O
U

T
P

E
N

N
P

E
N

P
P

E
N

R
E

S
IN

M
U

X

N
E

G
S

E
L

P
O

S
S

E
L

Bit Name Reset Access Description

31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

30:28 RESSEL 0x0 RW OPA1 Resistor Ladder Select

Configures the resistor ladder tap for OPA1.

Value Mode Resistor Value Inverting Mode Gain (-R2/R1) Non-inverting Mode Gain (1+(R2/
R1)

0 RES0 R2 = 1/3 x R1 -1/3 1 1/3

1 RES1 R2 = R1 -1 2

2 RES2 R2 = 1 2/3 x R1 -1 2/3 2 2/3

3 RES3 R2 = 2 x R1 -2 1/5 3 1/5

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 735 www.silabs.com

Figure 30.2. OPAMP Overview

-

+

OPA0TAP

OPA0TAP

NEXTOUT0

NEXTOUT0

VSS

OPA0

POSSEL[2:0]

NEGSEL[1:0]

POS0

NEG0

PPEN

NPEN

Main output
Alternat ive output network

R1 R2

Unity gain

POSPAD

NEXTOUT0

NEGPAD

RESINMUX[3:0]

-

+

OPA1TAP

OPA1TAP

NEXTOUT0

NEXTOUT0

VSS

OPA1

POSSEL[2:0]

NEGSEL[1:0]

POS1

NEG1

PPEN

NPEN

Main output
Alternat ive output network

R1 R2

Unity gain

POSPAD

NEXTOUT1

NEGPAD

RESINMUX[3:0]

-

+

OPA2TAP

OPA0TAP

NEXTOUT1

NEXTOUT1

VSS

OPA2

POSSEL[2:0]

NEGSEL[1:0]

POS2

NEG2

PPEN

NPEN

Main output

R1 R2

Unity gain

POSPAD

NEGPAD

RESINMUX[3:0]

30.3.1 Opamp Configuration

Since two of the three opamps (OPA0, OPA1) are part of the DAC, the opamp configuration registers
are located in the DAC. The mux registers for OPA0/OPA1 together with OPA2 registers are separate
registers, also located under the DAC module. OPA0 and OPA1 can be enabled by setting OPAxEN
in DACn_OPACTRL and CHxEN in CHxCTRL. OPA2 can be enabled by only setting OPA2EN in
DACn_OPACTRL.

30.3.1.1 Input Configuration

The inputs to the opamps are controlled through a set of input muxes. The mux connected to the
positive input is configured by the POSSEL bit-field in the DACn_OPAxMUX register. Similarly, the mux
connected to the negative input is configured by setting the NEGSEL bit-field in DACn_OPAxMUX. To
connect the pins to the input muxes, the pin switches must also be enabled. Setting the PPEN bit-
field enables to POSPADx, while setting the NPEN bit-field enables the NEGPADx, both located in
DACn_OPAxMUX. The input into the resistor ladder can be configured by setting the RESINMUX bit-
field in DACn_OPAxMUX.

30.3.1.2 Output Configuration

The opamp have two outputs, one main output and one alternative output with lower drive strength.
These two outputs can be used to drive the different outputs as shown in Figure 30.3 (p. 736) . The main
opamp output can be used to drive the main output by setting OUTMODE to MAIN in DACn_OPAxMUX.
The alternative opamp output can drive the alternative output network by setting OUTMODE to ALT in
DACn_OPAxMUX. In addition, it is also possible to use the main opamp output to drive both the main
output and the alternative output network by setting OUTMODE to ALL in DACn_OPAxMUX.

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 773 www.silabs.com

Bit Name Reset Access Description

Value Mode Description

0 PORTA Port A pin 13 selected for external interrupt 13

1 PORTB Port B pin 13 selected for external interrupt 13

2 PORTC Port C pin 13 selected for external interrupt 13

3 PORTD Port D pin 13 selected for external interrupt 13

4 PORTE Port E pin 13 selected for external interrupt 13

5 PORTF Port F pin 13 selected for external interrupt 13

19 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

18:16 EXTIPSEL12 0x0 RW External Interrupt 12 Port Select

Select input port for external interrupt 12.

Value Mode Description

0 PORTA Port A pin 12 selected for external interrupt 12

1 PORTB Port B pin 12 selected for external interrupt 12

2 PORTC Port C pin 12 selected for external interrupt 12

3 PORTD Port D pin 12 selected for external interrupt 12

4 PORTE Port E pin 12 selected for external interrupt 12

5 PORTF Port F pin 12 selected for external interrupt 12

15 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

14:12 EXTIPSEL11 0x0 RW External Interrupt 11 Port Select

Select input port for external interrupt 11.

Value Mode Description

0 PORTA Port A pin 11 selected for external interrupt 11

1 PORTB Port B pin 11 selected for external interrupt 11

2 PORTC Port C pin 11 selected for external interrupt 11

3 PORTD Port D pin 11 selected for external interrupt 11

4 PORTE Port E pin 11 selected for external interrupt 11

5 PORTF Port F pin 11 selected for external interrupt 11

11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

10:8 EXTIPSEL10 0x0 RW External Interrupt 10 Port Select

Select input port for external interrupt 10.

Value Mode Description

0 PORTA Port A pin 10 selected for external interrupt 10

1 PORTB Port B pin 10 selected for external interrupt 10

2 PORTC Port C pin 10 selected for external interrupt 10

3 PORTD Port D pin 10 selected for external interrupt 10

4 PORTE Port E pin 10 selected for external interrupt 10

5 PORTF Port F pin 10 selected for external interrupt 10

7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

6:4 EXTIPSEL9 0x0 RW External Interrupt 9 Port Select

Select input port for external interrupt 9.

Value Mode Description

0 PORTA Port A pin 9 selected for external interrupt 9

1 PORTB Port B pin 9 selected for external interrupt 9

2 PORTC Port C pin 9 selected for external interrupt 9

3 PORTD Port D pin 9 selected for external interrupt 9

4 PORTE Port E pin 9 selected for external interrupt 9

5 PORTF Port F pin 9 selected for external interrupt 9

3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2:0 EXTIPSEL8 0x0 RW External Interrupt 8 Port Select

...the world's most energy friendly microcontrollers

2016-04-28 - Giant Gecko Family - d0053_Rev1.20 805 www.silabs.com

Example 33.2. LCD Animation Enable Example

• Write data into the animation registers LCD_AREGA, LCD_AREGB
• Enable the correct shift direction (if any)
• Decide which logical function to perform on the registers

• ALOGSEL = 0: Data_out = LCD_AREGA & LCD_AREGB
• ALOGSEL = 1:Data_out = LCD_AREGA | LCD_AREGB

• Configure the right animation period (CLKEVENT)
• Enable the animation pattern and frame counter (AEN = 1, FCEN = 1)

For updating data in the LCD while it is running an animation, and the new animation data depends on
the pattern visible on the LCD, see the following example.

Example 33.3. LCD Animation Dependence Example

• Enable the LCD interrupt (the interrupt will be triggered simultaneously as the Animation State machine
changes state)

• In the interrupt handler, read back the current state (ASTATE)
• Knowing the current state of the Animation State Machine makes it possible to calculate what data

that is currently output
• Modify data as required (Data will be updated at the next Frame Counter Event). It is important that

new data is written before the next Frame Counter Event.

33.3.13 LCD in Low Energy Modes

As long as the LFACLK is running (EM0-EM2), the LCD controller continues to output LCD waveforms
according to the data that is currently synchronized to the LCD Driver logic. In addition, the following
features are still active if enabled:

• Animation State Machine
• Blink
• LCD Event Interrupt

33.3.14 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to
the HFCORECLK, special considerations must be taken when accessing registers. Please refer to
Section 5.3 (p. 20) for a description on how to perform register accesses to Low Energy Peripherals.

