

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	120-VFBGA
Supplier Device Package	120-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg995f512-bga120

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 7.1. Instruction Cache

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be disabled by setting AIDIS in MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing 1 to INVCACHE in MSC_CMD.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections of code with very low cache hit-rate more energy-efficient execution can be achieved by disabling the cache temporarily. To measure the hit-rate of a code-section, the built-in performance counters can be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD. This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by writing 1 to STOPPC in MSC_CMD. The number of cache hits and cache misses for that section can then be read from MSC_CACHEHITS and MSC_CACHEMISSES respectively. The total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES. Thus, the cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES). When MSC CACHEHITS overflows the CHOF interrupt flag is set. When MSC CACHEMISSES overflows the CMOF interrupt flag is set. These flags must be cleared explicitly by software. The range of the performance counters can thus be extended by increasing a counter in the MSC interrupt routine. The performance counters only count when a cache lookup is performed. If the lookup fails, MSC_CACHEMISSES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For example, a cache lookup is not performed if the cache is disabled or the code is executed from RAM outside the code space. When caching of vector fetches and instructions in interrupt routines is disabled (ICCDIS in MSC_READCTRL is set), the performance counters do not count when these types of fetches occur (i.e. while in interrupt context).

By default, interrupt vector fetches and instructions in interrupt routines are also cached. Some applications may get better cache utilization by not caching instructions in interrupt context. This is done by setting ICCDIS in MSC_READCTRL. You should only set this bit based on the results from a cache hit ratio measurement. In general, it is recommended to keep the ICCDIS bit cleared. Note that lookups in the cache are still performed, regardless of the ICCDIS setting - but instructions are not cached when cache misses occur inside the interrupt routine. So, for example, if a cached function is called from the interrupt routine, the instructions for that function will be taken from the cache.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless of the setting of AIDIS in MSC_READCTRL when entering these energy modes. Applications that switch frequently between EM0 and EM2/3 and execute the very same non-looping code almost every time will most likely benefit from putting this code in RAM. The interrupt vectors can also be put in RAM to reduce current consumption even further.

The cache also supports caching of instruction fetches from the external bus interface (EBI) when accessing the EBI through code space. By default, this is enabled, but it can be disabled by setting EBICDIS in MSC_READCTRL.

7.3.4.7 Instruction Prefetch

The MSC also includes instruction prefetch capability for the internal flash memory. This feature is by default disabled, but can be enabled by setting PREFETCH in MSC_READCTRL. The prefetcher works by the assumption that the next instruction word will be needed in the next fetch. This next word is fetched before the word is actually needed. If it turns out that this next word is actually needed by the CPU, the prefetched word can be returned in one clock cycle, removing the wait-states that would otherwise potentially be needed by a flash read. With the prefetcher enabled, the number of waitstates to the flash when accessing code that is not in the cache is effectively halved.

7.3.5 Erase and Write Operations

The AUXHFRCO is used for timing during flash write and erase operations. To achieve correct timing, the MSC_TIMEBASE register has to be configured according to the settings in CMU_AUXHFRCOCTRL. BASE in MSC_TIMEBASE defines how many AUXCLK cycles - 1 there is in 1 us or 5 us, depending on the configuration of PERIOD. To ensure that timing of flash write and erase operations is within the specification of the flash, the value written to BASE should give at least a 10% margin with respect to the period, i.e. for the 1 us PERIOD, the number of cycles should at least span 1.1 us, and for the 5 us period they should span at least 5.5 us. For the 1 MHz band, PERIOD in MSC_TIMEBASE should be set to 5US, while it should be set to 1US for all other AUXHFRCO bands.

Both page erase and write operations require that the address is written into the MSC_ADDRB register. For erase operations, the address may be any within the page to be erased. Load the address by writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written once when loading the first address. After each word is written the internal address register ADDR will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside the flash and the LOCKED bit of the MSC_STATUS register is set if the page addressed is locked. Any attempts to command erase of or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register. The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the MSC_STATUS register is set.

It is possible to write words twice between each erase by keeping at 1 the bits that are not to be changed. Let us take as an example writing two 16 bit values, 0xAAAA and 0x5555. To safely write them in the same flash word this method can be used:

- Write 0xFFFFAAAA (word in flash becomes 0xFFFFAAAA)
- Write 0x5555FFFF (word in flash becomes 0x5555AAAA)

Note that there is a maximum of two writes to the same word between each erase due to a physical limitation of the flash.

Note

During a write or erase, flash read accesses not subject to read-while-write will be stalled, effectively halting code execution from flash. Code execution continues upon write/ erase completion. Code residing in RAM may be executed during a write/erase operation regardless of whether read-while-write is enabled or not.

7.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	MSC_CTRL	RW	Memory System Control Register
0x004	MSC_READCTRL	RW	Read Control Register
0x008	MSC_WRITECTRL	RW	Write Control Register
0x00C	MSC_WRITECMD	W1	Write Command Register
0x010	MSC_ADDRB	RW	Page Erase/Write Address Buffer
0x018	MSC_WDATA	RW	Write Data Register
0x01C	MSC_STATUS	R	Status Register
0x02C	MSC_IF	R	Interrupt Flag Register
0x030	MSC_IFS	W1	Interrupt Flag Set Register
0x034	MSC_IFC	W1	Interrupt Flag Clear Register
0x038	MSC_IEN	RW	Interrupt Enable Register
0x03C	MSC_LOCK	RW	Configuration Lock Register
0x040	MSC_CMD	W1	Command Register
0x044	MSC_CACHEHITS	R	Cache Hits Performance Counter
0x048	MSC_CACHEMISSES	R	Cache Misses Performance Counter
0x050	MSC_TIMEBASE	RW	Flash Write and Erase Timebase
0x054	MSC_MASSLOCK	RW	Mass Erase Lock Register

7.5 Register Description

7.5.1 MSC_CTRL - Memory System Control Register

Offset								·							Bi	t Pc	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset																																-
Access																																RW
Name																																BUSFAULT

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure compa	atibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	BUSFAULT	1	RW	Bus Fault Response Enable
	When this bit is se	et, the memory system gener	rates bus er	ror response.
	Value	Mode	D	escription
	0	GENERATE	A	bus fault is generated on access to unmapped code and system space.

Accesses to unmapped address space is ignored.

IGNORE

1

EFM[®]32

Bit	Name	Description
[13:4]	n_minus_1	Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers that the DMA cycle contains. You must set these bits according to the size of DMA cycle that you require.
		The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
		b00000000 = 1 DMA transfer
		b00000001 = 2 DMA transfers
		b00000010 = 3 DMA transfers
		b00000011 = 4 DMA transfers
		b00000100 = 5 DMA transfers
		b11111111 = 1024 DMA transfers.
		The controller updates this field immediately prior to it entering the arbitration process. This enables the controller to store the number of outstanding DMA transfers that are necessary to complete the DMA cycle.
[3]	next_useburst	Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.
		Note Immediately prior to completion of the DMA cycle that the alternate data structure specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of remaining transfers is less than 2 ^R . The setting of the next_useburst bit controls if the controller performs an additional modification of the chnl_useburst_set [C] bit.
		In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data structure completes, either:
		0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter- gather transaction, the controller responds to requests on dma_req[] and dma_sreq[], when it performs a DMA cycle that uses an alternate data structure.
		1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA cycles in the peripheral scatter-gather transaction, the controller only responds to requests on dma_req[], when it performs a DMA cycle that uses an alternate data structure.
[2:0]	cycle_ctrl	The operating mode of the DMA cycle. The modes are:
		b000 Stop. Indicates that the data structure is invalid.
		process, to enable the DMA cycle to complete.
		b010 Auto-request. The controller automatically inserts a request for the appropriate channel during the arbitration process. This means that the initial request is sufficient to enable the DMA cycle to complete.
		b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After the DMA cycle completes, it performs a DMA cycle using the other data structure. After the DMA cycle completes and provided that the host processor has updated the original data structure, it performs a DMA cycle using the original data structure. The controller continues to perform DMA cycles until it either reads an invalid data structure or the host processor changes the cycle_ctrl bits to b001 or b010. See Section 8.4.2.3.4 (p. 54).
		b100 Memory scatter/gather. See Section 8.4.2.3.5 (p. 56).
		When the controller operates in memory scatter-gather mode, you must only use this value in the primary data structure.b101 Memory scatter/gather. See Section 8.4.2.3.5 (p. 56).
		When the controller operates in memory scatter-gather mode, you must only use this value in the alternate data structure.b110 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 59).
		When the controller operates in peripheral scatter-gather mode, you must only use this value in the primary data structure.b111 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 59).

11.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Register

Offset															Bi	t Po	ositi	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset												0				0													2	5	2	5
Access												RW				RW													Md		M	
Name												LFBE				LFAE													8	<u>1</u> 7	ΙΕΔ	۲ ۲

ыт	Name	Reset	Acces	ss Description	
31:21	Reserved	To ensure o	compatibility w	ith future devices, always writ	e bits to 0. More information in Section 2.1 (p. 3)
20	LFBE	0	RW	Clock Select for LFE	3 Extended
	This bit redefi	nes the meaning of the LFI	B field.		
	Value	Mode		Description	
	0	DISABLED		LFBCLK is disabled (when LFB	= DISABLED).
	1	ULFRCO		ULFRCO selected as LFBCLK (when LFB = DISABLED).
19:17	Reserved	To ensure of	compatibility w	ith future devices, always writ	e bits to 0. More information in Section 2.1 (p. 3)
16	LFAE	0	RW	Clock Select for LFA	A Extended
	This bit redefi	nes the meaning of the LF	A field.		
	Value	Mode		Description	
	0	DISABLED		LFACLK is disabled (when LFA	= DISABLED).
	1	ULFRCO		ULFRCO selected as LFACLK (when LFA = DISABLED).
15:4	Reserved	To ensure of	compatibility w	ith future devices, always writ	e bits to 0. More information in Section 2.1 (p. 3)
3:2	LFB	0x1	RW	Clock Select for LFE	3
	Selects the clo	ock source for LFBCLK.			
	LFB	LFBE		Mode	Description
	0	0		Disabled	LFBCLK is disabled
	1	0		LFRCO	LFRCO selected as LFBCLK
	2	0		LFXO	LFXO selected as LFBCLK
	3	0		HFCORECLKLEDIV2	HFCORECLK _{LE} divided by two is selected as LFBCLK
	0	1		ULFRCO	ULFRCO selected as LFBCLK
1:0	LFA	0x1	RW	Clock Select for LFA	
	Selects the clo	ock source for LFACLK.			
	LFA	LFAE		Mode	Description
	0	0		Disabled	LFACLK is disabled
	1	0		LFRCO	LFRCO selected as LFACLK
	2	0		LFXO	LFXO selected as LFACLK
	3	0		HFCORECLKLEDIV2	HFCORECLK _{LE} divided by two is selected as LFACLK
	0	1		ULFRCO	ULFRCO selected as LFACLK

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	DDJIT	0	R	Direct Drive Jitter Interrupt Flag
	Set when DCLKPERIOD is	not met.		
4	DDEMPTY	0	R	Direct Drive Data Empty Interrupt Flag
	Set when Direct Drive engir	e EBI_TFTDD dat	a is empty.	
3	VFPORCH	0	R	Vertical Front Porch Interrupt Flag
	Set at beginning of Vertical	Front Porch.		
2	VBPORCH	0	R	Vertical Back Porch Interrupt Flag
	Set at end of Vertical Back	Porch.		
1	HSYNC	0	R	Horizontal Sync Interrupt Flag
	Set at Horizontal Sync pulse	э.		
0	VSYNC	0	R	Vertical Sync Interrupt Flag
	Set at Vertical Sync pulse.			

14.5.40 EBI_IFS - Interrupt Flag Set Register

Offset					•										Bi	t Po	ositi	on					•				•				•	
0x09C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	e	2	-	0
Reset					·							·			·												0	0	0	0	0	0
Access																											W1	٧1	W1	W1	W1	W1
Name																											DDJIT	DDEMPTY	VFPORCH	VBPORCH	HSYNC	VSYNC

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure compa	tibility with futu	ire devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	DDJIT	0	W1	Direct Drive Jitter Interrupt Flag Set
	Write to 1 to set Direct Drive	e Jitter Interrupt flag	g.	
4	DDEMPTY	0	W1	Direct Drive Data Empty Interrupt Flag Set
	Write to 1 to set Direct Drive	e Data Empty Inter	upt flag.	
3	VFPORCH	0	W1	Vertical Front Porch Interrupt Flag Set
	Write to 1 to set Vertical Fro	ont Porch Interrupt	flag.	
2	VBPORCH	0	W1	Vertical Back Porch Interrupt Flag Set
	Write to 1 to set Vertical Bac	ck Porch Interrupt f	lag.	
1	HSYNC	0	W1	Horizontal Sync Interrupt Flag Set
	Write to 1 to set Horizontal	Sync interrupt flag.		
0	VSYNC	0	W1	Vertical Sync Interrupt Flag Set
	Write to 1 to set Vertical Syr	nc interrupt flag.		

EFM°32

...the world's most energy friendly microcontrollers

Offset	Name	Туре	Description
	USB_HCx_INT	RW1H	Host Channel x Interrupt Register
	USB_HCx_INTMSK	RW	Host Channel x Interrupt Mask Register
	USB_HCx_TSIZ	RW	Host Channel x Transfer Size Register
	USB_HCx_DMAADDR	RW	Host Channel x DMA Address Register
0x3C6A0	USB_HC13_CHAR	RWH	Host Channel x Characteristics Register
0x3C6A8	USB_HC13_INT	RW1H	Host Channel x Interrupt Register
0x3C6AC	USB_HC13_INTMSK	RW	Host Channel x Interrupt Mask Register
0x3C6B0	USB_HC13_TSIZ	RW	Host Channel x Transfer Size Register
0x3C6B4	USB_HC13_DMAADDR	RW	Host Channel x DMA Address Register
0x3C800	USB_DCFG	RW	Device Configuration Register
0x3C804	USB_DCTL	RWH	Device Control Register
0x3C808	USB_DSTS	R	Device Status Register
0x3C810	USB_DIEPMSK	RW	Device IN Endpoint Common Interrupt Mask Register
0x3C814	USB_DOEPMSK	RW	Device OUT Endpoint Common Interrupt Mask Register
0x3C818	USB_DAINT	R	Device All Endpoints Interrupt Register
0x3C81C	USB_DAINTMSK	RW	Device All Endpoints Interrupt Mask Register
0x3C828	USB_DVBUSDIS	RW	Device VBUS Discharge Time Register
0x3C82C	USB_DVBUSPULSE	RW	Device VBUS Pulsing Time Register
0x3C834	USB_DIEPEMPMSK	RW	Device IN Endpoint FIFO Empty Interrupt Mask Register
0x3C900	USB_DIEP0CTL	RWH	Device IN Endpoint 0 Control Register
0x3C908	USB_DIEP0INT	RWH	Device IN Endpoint 0 Interrupt Register
0x3C910	USB_DIEP0TSIZ	RW	Device IN Endpoint 0 Transfer Size Register
0x3C914	USB_DIEP0DMAADDR	RW	Device IN Endpoint 0 DMA Address Register
0x3C918	USB_DIEP0TXFSTS	R	Device IN Endpoint 0 Transmit FIFO Status Register
0x3C920	USB_DIEP0_CTL	RWH	Device IN Endpoint x+1 Control Register
0x3C928	USB_DIEP0_INT	RWH	Device IN Endpoint x+1 Interrupt Register
0x3C930	USB_DIEP0_TSIZ	RW	Device IN Endpoint x+1 Transfer Size Register
0x3C934	USB_DIEP0_DMAADDR	RW	Device IN Endpoint x+1 DMA Address Register
0x3C938	USB_DIEP0_TXFSTS	R	Device IN Endpoint x+1 Transmit FIFO Status Register
0x3C940	USB_DIEP1_CTL	RWH	Device IN Endpoint x+1 Control Register
0x3C948	USB_DIEP1_INT	RWH	Device IN Endpoint x+1 Interrupt Register
0x3C950	USB_DIEP1_TSIZ	RW	Device IN Endpoint x+1 Transfer Size Register
0x3C954	USB_DIEP1_DMAADDR	RW	Device IN Endpoint x+1 DMA Address Register
0x3C958	USB_DIEP1_TXFSTS	R	Device IN Endpoint x+1 Transmit FIFO Status Register
0x3C960	USB_DIEP2_CTL	RWH	Device IN Endpoint x+1 Control Register
0x3C968	USB_DIEP2_INT	RWH	Device IN Endpoint x+1 Interrupt Register
0x3C970	USB_DIEP2_TSIZ	RW	Device IN Endpoint x+1 Transfer Size Register
0x3C974	USB_DIEP2_DMAADDR	RW	Device IN Endpoint x+1 DMA Address Register
0x3C978	USB_DIEP2_TXFSTS	R	Device IN Endpoint x+1 Transmit FIFO Status Register
0x3C980	USB_DIEP3_CTL	RWH	Device IN Endpoint x+1 Control Register
0x3C988	USB_DIEP3_INT	RWH	Device IN Endpoint x+1 Interrupt Register
0x3C990	USB_DIEP3_TSIZ	RW	Device IN Endpoint x+1 Transfer Size Register

15.6.55 USB_DIEPx_CTL - Device IN Endpoint x+1 Control Register

The application uses this register to control the behavior of each logical endpoint other than endpoint 0.

Offset									·					Bi	t Pc	ositio	on													
0x3C920	31	30	29	28	27	26	25	24	23	22	21	20	19	17	16	15	14	13	12	1	10	o -	∞	~	9 5	, ,	4	ო	2	- 0
Reset	0	0	0	0	0	0		0.00	nxn		0		0x0	0	0	0									000-0	UNUNU				
Access	RW1H	RW1H	W1	W1	W1	W1					RW1H		RW	۲	۲	RW										Х Х				
Name	EPENA	EPDIS	SETD1PIDOF	SETDOPIDEF	SNAK	CNAK					STALL		ЕРТҮРЕ	NAKSTS	DPIDEOF	USBACTEP										NHN N				
Bit	Na	me						Re	set			A	ccess	;	De	scri	ptio	on												
31	EPI	ENA						0				R	W1H		En	dpoi	nt E	nab	le											
	In E sett enc	DMA ting a Ipoin	moc any o its in	le fo of th DM	r IN e fo A m	enc llow ode	lpoii ring , thi	nts, f inter s bit	this I rrupt mus	bit in s on st be	dicat this set t	es t enc o be	hat dat lpoint: 3 e able to	a is r SETI o trai	ready JP F nsfei	y to b Phase SET	e tr e Dα ΓUΡ	ansi one, dat	mitte Ene a pa	ed o dpoi icke	n the nt Di ts in	endp sable memo	ooin d, T ory.	t. Th Trans	e co sfer (re c Con	clear nple	rs thi ted.	is bit For	before control
30	EPI	DIS						0				R	W1H		En	dpoi	nt D	lisal	ble											
	The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complication must wait for the Endpoint Disabled interrupt before treating the endpoint as disabled. The core clears this bit bit is setting the Endpoint Disabled interrupt. The application must set this bit only if Endpoint Enable is already set for this endpoint SETD1PIDOF 0 W1 Set DATA1 PID / Odd Frame For bulk and interrupt endpoints writing this field sets the Endpoint Data PID / Even or Odd Frame (DPIDEOF) field in this regime to the endpoint of the en															nplete. before nt.														
29	SE	TD1	PIDC)F				0				W	/1		Set	DA	ΓA1	PID	/0	dd I	Fram	е								
	SETD1PIDOF 0 W1 Set DATA1 PID / Odd Frame For bulk and interrupt endpoints writing this field sets the Endpoint Data PID / Even or Odd Frame (DPIDEOF) field in this re to DATA10DD.															egister														
	For	isoc	hror	nous	end	poi	nts v	writir	ng th	is fie	ld se	ets th	ne Endr	ooint	Data	a PIC)/E	ven	or C	Ddd	Fram	e (DF	PIDI	EOF) field	d to	o odc	d (DA	ATA1	ODD).
28	SE	TDO	PIDE	F				0	0			W	/1		Set	DA	ГАО	PID)/E	ven	Fran	ne			,					,
	For to D	bulk DATA	(and A0E\	d inte /EN.	errup	ot e	ndpo	oints	writ	ing t	his fi	eld	sets the	e En	dpoi	nt Da	ata F	PID /	/ Ev	en c	or Od	d Fra	me	(DP	IDEC)F)	field	d in t	this r	egister
	For	isoc	hron	ous	end	poi	nts v	vritin	ig th	is fie	d se	ts th	e Endp	oint	Data	PID	/ E\	ven (or O	dd F	rame	e (DP	IDE	OF)	field	too	odd	(DA	TA0E	EVEN).
27	SN	AK				- 11		0				W	/1		Set	NAI	K	P			1						- ()			
	on a	an ei	ndpc	pint.	The	cor	e ca	an al	SO S	et thi	s bit	for a	an endr	g thi point	afte	, the r a S	арр ЕТС	JP p	ack	can et is	rece	ived o	e tra on tl	hat e	endpo	on c oint	t.	AK I	and	snakes
26	CN	AK						0				W	/1		Cle	ar N	AK													
	Aw	rite	to th	is bit	clea	ars	the	NAK	bit	for th	e en	dpo	int.																	
25:22	TXI	=NUI	M					0x0)			R	W		Tx	FIFO	Nu	mbe	er											
	The nun	ese b nber	its s . Thi	peci s fie	fy th Id is	e F val	FO id or	num nly fo	ber or IN	asso end	ciate poin	ed wi ts.	ith this	endp	oint.	Eac	h ac	ctive	IN e	endp	point	must	be p	orog	ramn	ned	l to a	a sep	barat	e FIFO
21	ST	۹LL						0				R	W1H		Ha	ndsh	ake	;												
	For Nor can	bulk n-pei i clea	and riodio ar thi	l inte c IN s bit	nrup NAł , nev	t er K, o ver	dpo r Gl the	oints: obal core	The OU	app T N/	licati \K is	on s set	ets this along	s bit t with	o sta this	ll all bit, t	toke he \$	ens f STA	rom LL I	the bit ta	USB akes	host priori	to tł ty. I	nis e n th	ndpo is ca:	vint. se v	. If a only	NAł the	< bit, appl	Global ication
	Wh If a this	en c NAł bit's	ontro K bit, s sett	ol en Glo ting,	dpoi bal I the	int: Nor cor	The -pei e alv	appl riodi ways	licati c IN s res	on c NAK ponc	an or (, or Is to	nly s Glob SET	et this b bal OU ⁻ UP dat	oit, a T NA ta pa	nd th K is icket	ne co set a s wit	re c alon h ar	lear g wi n AC	s it, th th K h	whe nis b ands	n a S it, the shake	ETUF e STA e.	> tol	ken i bit ta	s rec akes	eiv; prie	ed fo ority	or th 7. Irre	is en espec	dpoint. ctive of
20	Rea	serve	əd					То	ens	ure c	omp	atibi	ility with	n futu	re de	evice	es, a	lway	/S W	rite I	bits to	0. N	lore	info	rmat	ion	in S	ectio	on 2.	1 (p. 3)
19:18	EP	TYPI	E					0x0)			R	W		En	dpoi	nt T	ype												
	Thi	s is t	he tr	ansf	fer ty	/pe	sup	porte	ed b	y this	s logi	cal	endpoir	nt.																
	Va	ue			М	lode							[Descr	iption	1														
	0				C	ON	RO	L					0	Contro	ol Ene	dpoin	t.													1

Bit	Name	Reset	Access	Description										
31:8	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)										
7:1	ADDR	0x00 RW Slave address												
	Specifies the slave address	of the device.												
0	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)										

16.5.7 I2Cn_SADDRMASK - Slave Address Mask Register

Offset															Bi	t Po	siti	on													;	
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	e	2	-	0
Reset																												0×00				
Access																												RW				
Name																												MASK				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:1	MASK	0x00	Slave Address Mask	
	Specifies the significant bits match the exact address sp	of the slave addre ecified by ADDR.	ess. Setting the	mask to 0x00 will match all addresses, while setting it to 0x7F will only
0	Reserved	To ensure compa	atibility with futu	ire devices, always write bits to 0. More information in Section 2.1 (p. 3)

16.5.8 I2Cn_RXDATA - Receive Buffer Data Register

Offset															Bi	t Po	ositi	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	ი	8	7	9	5	4	з	2	-	0
Reset																													0x00			
Access																								_				ſ	ĸ			
Name																													RXDATA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	RXDATA	0x00	R	RX Data
	Use this register to read from	n the receive buffe	r. Buffer is em	ptied on read access.

The clock divider used in the LEUART is a 12-bit value, with a 7-bit integral part and a 5-bit fractional part. The baud rate of the LEUART is given by :

LEUART Baud Rate Equation

$$br = fLEUARTn/(1 + LEUARTn_CLKDIV/256)$$
(19.1)

where fLEUARTn is the clock frequency supplied to the LEUART. The value of LEUARTn_CLKDIV thus defines the baud rate of the LEUART. The integral part of the divider is right-aligned in the upper 24 bits of LEUARTn_CLKDIV and the fractional part is left-aligned in the lower 8 bits. The divider is thus a 256th of LEUARTn_CLKDIV as seen in the equation.

For a desired baud rate br_{DESIRED}, LEUARTn_CLKDIV can be calculated by using:

LEUART CLKDIV Equation

```
LEUARTn_CLKDIV = 256 x (fLEUARTn/br_{DESIRED} - 1) (19.2)
```

Table 19.2 (p. 500) lists a set of desired baud rates and the closest baud rates reachable by the LEUART with a 32.768 kHz clock source. It also shows the average baud rate error.

Desired baud rate [baud/s]	LEUARTn_CLKDIV	LEUARTn_CLKDIV/256	Actual baud rate [baud/s]	Error [%]
300	27704	108,21875	300,0217	0,01
600	13728	53,625	599,8719	-0,02
1200	6736	26,3125	1199,744	-0,02
2400	3240	12,65625	2399,487	-0,02
4800	1488	5,8125	4809,982	0,21
9600	616	2,40625	9619,963	0,21

Table 19.2. LEUART Baud Rates

19.3.4 Data Transmission

Data transmission is initiated by writing data to the transmit buffer using one of the methods described in Section 19.3.4.1 (p. 500). When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available. Transmission is enabled through the command register LEUARTn_CMD by setting TXEN, and disabled by setting TXDIS. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in LEUARTn_STATUS. After a transmission, when there is no more data in the shift register or transmit buffer, the TXC flag in LEUARTn_STATUS and the TXC interrupt flag in LEUARTn_IF are set, signaling that the transmitter is idle. The TXC status flag is cleared when a new byte becomes available for transmission, but the TXC interrupt flag must be cleared by software.

19.3.4.1 Transmit Buffer Operation

A frame can be loaded into the transmit buffer by writing to LEUARTn_TXDATA or LEUARTn_TXDATAX. Using LEUARTn_TXDATA allows 8 bits to be written to the buffer. If 9 bit frames are used, the 9th bit will in that case be set to the value of BIT8DV in LEUARTn_CTRL. To set the 9th bit directly and/or use transmission control, LEUARTn_TXDATAX must be used. When writing data to the transmit buffer using LEUARTn_TXDATAX, the 9th bit written to LEUARTn_TXDATAX overrides the value in BIT8DV, and alone defines the 9th bit that is transmitted if 9-bit frames are used.

The PWM frequency is given by Equation 20.7 (p. 535) :

TIMER 2x Mode PWM Frequency Equation(Up/Down-count)	
$f_{PWM_{2xmode}} = f_{HFPERCLK} / TOP$	(20.13)
The high duty cycle is given by Equation 20.14 (p. 537)	

TIMER 2x Mode Duty Cycle Equation

DS_{2xmode} = CCVx/TOP

(20.14)

20.3.3 Dead-Time Insertion Unit (TIMER0 only)

The Dead-Time Insertion Unit aims to make control of BLDC motors safer and more efficient by introducing complementary PWM outputs with dead-time insertion and fault handling, see Figure 20.22 (p. 537).

Figure 20.22. TIMER Dead-Time Insertion Unit Overview

When used for motor control, the PWM outputs TIM0_CC0, TIM0_CC1 and TIM0_CC2 are often connected to the high-side transistors of a triple half-bridge setup (UH, VH and WH), and the complementary outputs connected to the respective low-side transistors (UL, VL, WL shown in Figure 20.23 (p. 537)). Transistors used in such a bridge often do not open/close instantaneously, and using the exact complementary inputs for the high and low side of a half-bridge may result in situations where both gates are open. This can give unnecessary current-draw and short circuit the power supply. The DTI unit provides dead-time insertion to deal with this problem.

Figure 20.23. TIMER Triple Half-Bridge

For each of the 3 compare-match outputs of TIMER0, an additional complementary output is provided by the DTI unit. These outputs, named TIM0_CDTI0, TIM0_CDTI1 and TIM0_CDTI2 are provided to make

EFM°32

...the world's most energy friendly microcontrollers

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	ICBOF2	0	R	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	capture value has	pushed an unr	ead value out of the TIMERn_CC2_CCV/TIMERn_CC2_CCVB register
9	ICBOF1	0	R	CC Channel 1 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	capture value has	pushed an unr	ead value out of the TIMERn_CC1_CCV/TIMERn_CC1_CCVB register
8	ICBOF0	0	R	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	capture value has	pushed an unr	ead value out of the TIMERn_CC0_CCV/TIMERn_CC0_CCVB register
7	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CC2	0	R	CC Channel 2 Interrupt Flag
	This bit indicates that there	has been an interr	upt event on C	ompare/Capture channel 2.
5	CC1	0	R	CC Channel 1 Interrupt Flag
	This bit indicates that there	has been an interr	upt event on C	ompare/Capture channel 1.
4	CC0	0	R	CC Channel 0 Interrupt Flag
	This bit indicates that there	has been an interr	upt event on C	ompare/Capture channel 0.
3:2	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	UF	0	R	Underflow Interrupt Flag
	This bit indicates that there	has been an unde	rflow.	
0	OF	0	R	Overflow Interrupt Flag
	This bit indicates that there	has been an overf	low.	

20.5.6 TIMERn_IFS - Interrupt Flag Set Register

Offset								•							Bi	t Po	siti	on						•								
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	e	2	-	0
Reset				·				·				·			·	·	·					0	0	0		0	0	0			0	0
Access																						٧١	M1	۲۱		٧	۲۱	W1			٧	٧١
Name																						ICB0F2	ICBOF1	ICBOF0		CC2	cc1	cco			UF	QF

Bit	Name	Reset	Access	Description												
31:11	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)												
10	ICBOF2	0	W1	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag Set												
	Writing a 1 to this bit will set	Compare/Capture	channel 2 inpu	ut capture buffer overflow interrupt flag.												
9	ICBOF1	0	W1 CC Channel 2 Input Capture Buffer Overflow Interrupt Flag Set bare/Capture channel 2 input capture buffer overflow interrupt flag. W1 CC Channel 1 Input Capture Buffer Overflow Interrupt Flag Set bare/Capture channel 1 input capture buffer overflow interrupt flag. W1 CC Channel 0 Input Capture Buffer Overflow Interrupt Flag Set bare/Capture channel 1 input capture buffer overflow interrupt flag. W1 CC Channel 0 Input Capture Buffer Overflow Interrupt Flag Set bare/Capture channel 0 input capture buffer overflow interrupt flag. Buffer Overflow Interrupt Flag Set bare/Capture channel 0 input capture buffer overflow interrupt flag. Buffer Overflow Interrupt Flag Set bare/Capture channel 0 input capture buffer overflow interrupt flag. Buffer Overflow Interrupt Flag Set bare compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)													
	Writing a 1 to this bit will set	Compare/Capture	channel 1 inpu	ut capture buffer overflow interrupt flag.												
8	ICBOF0	0	W1	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag Set												
	Writing a 1 to this bit will set	Compare/Capture	channel 0 inpu	ut capture buffer overflow interrupt flag.												
7	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)												
6	CC2	0	W1	CC Channel 2 Interrupt Flag Set												
	Writing a 1 to this bit will set	Compare/Capture	channel 2 inte	rrupt flag.												
5	CC1	0	W1	CC Channel 1 Interrupt Flag Set												

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with t	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CNT	0x0000	RWH	Counter Value
	These bits hold the cou	nter value.		

20.5.11 TIMERn_ROUTE - I/O Routing Register

Offset															Bi	t Po	ositi	on					•	•	•		•					
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset								-	-						0X0							0	0	0			-			0	0	0
Access															RW							RW	RW	RW						RW	RW	RW
Name															LOCATION							CDTI2PEN	CDTI1PEN	CDTIOPEN						CC2PEN	CC1PEN	CCOPEN

Bit	Name	Reset	Acces	s Description
31:19	Reserved	To ensure	compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
18:16	LOCATION	0x0	RW	I/O Location
	Decides the location	n of the CC and CD	Γl pins.	
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5
15:11	Reserved	To ensure	compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	CDTI2PEN	0	RW	CC Channel 2 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC	channel 2 compleme	entary dead-time	e insertion output connection to pin.
9	CDTI1PEN	0	RW	CC Channel 1 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC	channel 1 compleme	entary dead-time	e insertion output connection to pin.
8	CDTIOPEN	0	RW	CC Channel 0 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC	channel 0 compleme	entary dead-time	e insertion output connection to pin.
7:3	Reserved	To ensure	compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	CC2PEN	0	RW	CC Channel 2 Pin Enable
	Enable/disable CC	channel 2 output/inp	ut connection to	pin.
1	CC1PEN	0	RW	CC Channel 1 Pin Enable
	Enable/disable CC	channel 1 output/inp	ut connection to	pin.
0	CC0PEN	0	RW	CC Channel 0 Pin Enable
	Enable/disable CC	Channel 0 output/inp	out connection to	o pin.

...the world's most energy friendly microcontrollers

20.5.19 TIMERn_DTOGEN - DTI Output Generation Enable Register

Offset															Bi	t Pc	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	e	2	-	0
Reset								-				-					-						-				0	0	0	0	0	0
Access																											RW	RW	RW	RW	RW	RW
Name																											DTOGCDT12EN	DTOGCDTI1EN	DTOGCDTIOEN	DTOGCC2EN	DTOGCC1EN	DTOGCC0EN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	DTOGCDTI2EN	0	RW	DTI CDTI2 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CDTI2 out	tput from the DTI.
4	DTOGCDTI1EN	0	RW	DTI CDTI1 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CDTI1 out	tput from the DTI.
3	DTOGCDTI0EN	0	RW	DTI CDTI0 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CDTI0 out	tput from the DTI.
2	DTOGCC2EN	0	RW	DTI CC2 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CC2 output	ut from the DTI.
1	DTOGCC1EN	0	RW	DTI CC1 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CC1 output	ut from the DTI.
0	DTOGCC0EN	0	RW	DTI CC0 Output Generation Enable
	This bit enables/disables ou	Itput generation for	the CC0 output	ut from the DTI.

20.5.20 TIMERn_DTFAULT - DTI Fault Register

									_																							
Offset															Bi	t Pc	siti	on				·										
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	۲	0
Reset					-			-								-						-	-						0	0	0	0
Access																													ъ	ĸ	Я	۲
Name																													DTLOCKUPF	DTDBGF	DTPRS1F	DTPRS0F

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	DTLOCKUPF	0	R	DTI Lockup Fault
	This bit is set to 1 if a core used to clear fault bits.	lockup fault has c	occurred and D	TLOCKUPFEN is set to 1. The TIMER0_DTFAULTC register can be
2	DTDBGF	0	R	DTI Debugger Fault
	This bit is set to 1 if a debu clear fault bits.	gger fault has occ	urred and DTD	BGFEN is set to 1. The TIMER0_DTFAULTC register can be used to
1	DTPRS1F	0	R	DTI PRS 1 Fault
	This bit is set to 1 if a PRS clear fault bits.	1 fault has occur	red and DTPR	S1FEN is set to 1. The TIMER0_DTFAULTC register can be used to

22.5.15 BURTC_FREEZE - Freeze Register

Offset				·				•	·						Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ი	8	7	9	5	4	ю	2	-	0
Reset																															,	0
Access																																RW
Name																																REGFREEZE
Bit	Na	me						Re	set			А		ess		De	scri	ipti	on													
31:1	Re	serve	ed					То	ensi	ure c	comp	atibi	ility	with	futu	re de	evice	es, a	alwa	iys v	vrite	bits	to 0.	Mor	e inf	orm	natio	n in	Sect	ion 2	.1 (p	o. 3)
0	RE	GFR	EEZ	ΖE				0				R	W			Reg	giste	er U	pda	ate F	reez	e										
	Wh	en s	et. tl	he ui	odat	e of	the	BUF	RTC	is p	ostor	oned	l uni	til th	nis bi	t is c	lear	ed. I	Use	this	s bit t	our	odate	e sev	veral	rec	iste	rs si	multa	aneo	uslv	

Value	Mode	Description
0	UPDATE	Each write access to an BURTC register is updated into the Low Frequency domain as soon as possible.
1	FREEZE	The BURTC is not updated with the new written value until the freeze bit is cleared.

22.5.16 BURTC_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	e	2	-	0
Reset																															0	0
Access																															Я	ĸ
Name																															COMP0	LPMODE
Bit	Na	me						Re	set			A		ess		De	scri	iptio	on													
31:2	Re	serve	ed					То	ensi	ure c	comp	atib	ility	with	futu	re de	evice	es, a	lwaj	ys w	rite I	bits i	to 0.	Mor	e info	orm	atio	n in l	Sect	ion 2	.1 (p	. 3)
1	со	MPO)					0				R				со	MPO) Re	gist	er E	Busy	,										
	Set	whe	en th	e va	lue v	writte	en to	o CC	OMP	0 is	bein	g sy	nchr	roni	zed.																	
0	LPI	MOD	ЭE					0				R				LPI	NOD	DE R	egi	ster	Bus	sy										

Set when the value written to LPMODE is being synchronized.

22.5.17 RETx_REG - Retention Register

Offset															Bi	t Po	ositi	on						•			•					
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	∞	7	9	5	4	e	7	1	0
Reset																	VVVVVVVV															
Access																																
Name																	צם															

23.5.4 LETIMERn_CNT - Counter Value Register

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	6	5	4	e	2	-	0
Reset																									nnnnxn							
Access																_									ПWЛ							
Name																								Ę	CN							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CNT	0x0000	RWH	Counter Value
	Use to read the current valu	e of the LETIMER.		

23.5.5 LETIMERn_COMP0 - Compare Value Register 0 (Async Reg)

Offset															Bi	t Po	ositi	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	ი	8	7	9	5	4	ю	2	-	0
Reset																									nnnnxn							
Access																									2 2							
Name																							-		COMPU							
Bit	Na	me						Re	set			4		ess		De	scri	iptio	on													

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	COMP0	0x0000	RW	Compare Value 0
	Compare and optionally top	value for LETIME	२	

23.5.6 LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

One should wait until the warm-up period is over before entering EM2 or EM3, otherwise no comparator interrupts will be detected. EM1 can still be entered during warm-up. After the warm-up period is completed, interrupts will be detected in EM2 and EM3.

26.3.2 Response Time

There is a delay from when the actual input voltage changes polarity, to when the output toggles. This period is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIASPROG, FULLBIASPROG and HALFBIAS fields in the ACMPn_CTRL register, as illustrated in Table 26.1 (p. 671) Setting the HALFBIAS bit in ACMPn_CTRL effectively halves the current. Setting a lower bias current will result in lower power consumption, but a longer response time.

If the FULLBIAS bit is set, the highest hysteresis level should be used to avoid glitches on the output.

BIASPROG		Bias Current (µ	A), HYSTSEL=0	
	FULLBIAS=0, HALFBIAS=1	FULLBIAS=0, HALFBIAS=0	FULLBIAS=1, HALFBIAS=1	FULLBIAS=1, HALFBIAS=0
0b0000	0.05	0.1	3.3	6.5
0b0001	0.1	0.2	6.5	13
0b0010	0.2	0.4	13	26
0b0011	0.3	0.6	20	39
0b0100	0.4	0.8	26	52
0b0101	0.5	1.0	33	65
0b0110	0.6	1.2	39	78
0b0111	0.7	1.4	46	91
0b1000	1.0	2.0	65	130
0b1001	1.1	2.2	72	143
0b1010	1.2	2.4	78	156
0b1011	1.3	2.6	85	169
0b1100	1.4	2.8	91	182
0b1101	1.5	3.0	98	195
0b1110	1.6	3.2	104	208
0b1111	1.7	3.4	111	221

Table 26.1. Bias Configuration

26.3.3 Hysteresis

In the analog comparator, hysteresis can be configured to 8 different levels, including off which is level 0, through the HYSTSEL field in ACMPn_CTRL. When the hysteresis level is set above 0, the digital output will not toggle until the positive input voltage is at a voltage equal to the hysteresis level above or below the negative input voltage (see Figure 26.2 (p. 672)). This feature can be used to filter out uninteresting input fluctuations around zero and only show changes that are big enough to breach the hysteresis threshold. Note that the ACMP current consumption will be influenced by the selected hysteresis level and in general decrease with increasing HYSTSEL values.

Bit	Name	Reset Acces	s Description
	Value	Mode	Description
	0x01	A0	Enable em4 wakeup on pin A0
	0x02	A6	Enable em4 wakeup on pin A6
	0x04	C9	Enable em4 wakeup on pin C9
	0x08	F1	Enable em4 wakeup on pin F1
	0x10	F2	Enable em4 wakeup on pin F2
	0x20	E13	Enable em4 wakeup on pin E13

32.5.24 GPIO_EM4WUPOL - EM4 Wake-up Polarity Register

Offset			-												Bi	t Po	ositi	on														·
0x138	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset																														0000		
Access																													M/D			
Name																																

Bit	Name	Reset	Acces	s Description
31:6	Reserved	To ensure com	npatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	EM4WUPOL	0x00	RW	EM4 Wake-up Polarity
	Write bit n to 1 for	high wake-up request. W	rite bit n to 0) for low wake-up request
	Value	Mode		Description
	0x01	A0		Determines polarity on pin A0
	0x02	A6		Determines polarity on pin A6
	0x04	C9		Determines polarity on pin C9
	0x08	F1		Determines polarity on pin F1
	0x10	F2		Determines polarity on pin F2
	0x20	E13		Determines polarity on pin E13

32.5.25 GPIO_EM4WUCAUSE - EM4 Wake-up Cause Register

Offset															Bi	t Po	siti	on							÷							
0x13C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	ი	8	7	9	5	4	e	2	-	0
Reset																													0	0000		
Access																													ſ	r		
Name																														EM4WUCAUSE		
Bit	Na	me						Re	set			A		ess		De	scri	iptio	on													

31:6	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	EM4WUCAUSE	0x00	R	EM4 wake-up cause

Bit n indicates which pin the wake-up request occurred.

List of Tables

2.1. Register Access Types	3
3.1. Energy Mode Description	8
3.2. EFM32GG Microcontroller Series	8
3.3. Minor Revision Number Interpretation	. 11
4.1. Interrupt Request Lines (IRQ)	13
5.1. Memory System Core Feliphetais	10
5.3 Memory System Peripherals	19
5.4. Device Information Page Contents	. 23
7.1. MSC Flash Memory Mapping	32
7.2. Lock Bits Page Structure	32
8.1. AHB bus transfer arbitration interval	. 51
8.2. DMA channel priority	. 51
8.3. DMA cycle types	53
8.4. channel_cfg for a primary data structure, in memory scatter-gather mode	57
8.5. channel_ctg for a primary data structure, in peripheral scatter-gather mode	59
8.6. Address bit settings for the channel control data structure	62
8.7. src_data_end_ptr bit assignments	. 03
0.0. ust_uata_enu_pri bit assignments	. 04 6/
8.10 DMA cycle of six words using a word increment	. 07
8.11. DMA cycle of 12 bytes using a halfword increment	68
8.12. User data assignments when DESCRECT is set	69
9.1. RMU Reset Cause Register Interpretation	. 99
10.1. EMU Energy Mode Overview	108
10.2. EMU Entering a Low Energy Mode	110
10.3. EMU Wakeup Triggers from Low Energy Modes	. 111
11.1. Configuration For Operating Frequencies	135
13.1. Reflex Producers	166
13.2. Reflex Consumers	167
14.1. EBI Intrapage nit condition for read on address Addr (non-mentioned Addr bits are unchanged)	182
14.2. EDI Enability EDI_ADDR liftes for transaction with adultess Adult and data Data	100
14.3. EDI Mapping of Arib Transactions to External Device Transactions	100
14.5. EBI NAND Flash Write Timing	195
	100
14.6. FBI NAND Flash Read Timing	196
14.6. EBI NAND Flash Read Timing	196 196
 14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements	196 196 198
 14.6. EBI NAND Flash Read Timing	196 196 198 198
 14.6. EBI NAND Flash Read Timing	196 196 198 198 198
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBI_ECCPARITY valid bits 14.11. EBI Error Detection Result	196 196 198 198 199 199
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBI_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations	196 196 198 198 199 199 259
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBI_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2.	196 196 198 198 199 199 259 288 232
14.6. EBI NAND Flash Read Timing	196 196 198 198 199 199 259 288 332 223
14.6. EBI NAND Flash Read Timing	196 196 198 198 199 259 288 332 333 418
 14.6. EBI NAND Flash Read Timing	196 196 198 198 199 259 288 332 333 418 420
 14.6. EBI NAND Flash Read Timing	196 196 198 198 199 259 288 332 333 418 420 421
 14.6. EBI NAND Flash Read Timing	196 198 198 199 259 288 332 333 418 420 421 424
 14.6. EBI NAND Flash Read Timing	196 198 198 199 259 288 332 333 418 420 421 424 426
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBI_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter	196 196 198 199 259 288 332 333 418 420 421 424 426 428
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBI_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values	196 196 198 199 259 288 332 333 418 420 421 424 426 428 429
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C STATE Values 16.8. I ² C Transmission Status	196 196 198 199 259 288 332 333 418 420 421 424 426 428 429 429
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C STATE Values 16.8. I ² C Slave Transmitter	196 196 198 199 259 288 332 333 418 420 421 424 426 428 429 429 429 432
14.6. EBI NAND Flash Read Timing	196 196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Transmitter 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.1. I ² C Bus Error Response 16.1. I ² C Bus Error Response	196 196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.1. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode	196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434 451
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.1. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Pin Usage 17.3. USART Asynchronous vs. Synchronous Mode	196 196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434 451 451
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Pin Usage 17.3. USART Data Bits 17.4 LISART Stron Bits	196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434 451 451 452 452
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Pin Usage 17.4. USART Stop Bits 17.4. USART Pait bits	196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434 451 451 452 452 453
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC PARITY valid bits 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Receiver 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmister 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Buse Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Pin Usage 17.3. USART Data Bits 17.4. USART Stop Bits 17.5. USART Port By Bits 17.6. USART Coversampling	196 198 198 199 259 288 332 333 418 420 421 424 426 428 429 429 432 433 434 451 451 452 453 453
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Bit/Column Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.3. USART Data Bits 17.4. USART Totap Bits 17.5. USART Parity Bits 17.6. USART Oversampling 17.7. USART Baud Rates @ 4MHz Peripheral Clock	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 424\\ 426\\ 428\\ 429\\ 432\\ 433\\ 434\\ 451\\ 451\\ 452\\ 453\\ 453\\ 454\\ \end{array}$
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.5. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.3. USART Din Bits 17.4. USART Tarity Bits 17.5. USART Parity Bits 17.6. USART Parity Bits 17.7. USART Baud Rates @ 4MHz Peripheral Clock 17.8. USART SPI Modes	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 424\\ 426\\ 428\\ 429\\ 432\\ 433\\ 434\\ 451\\ 451\\ 452\\ 453\\ 453\\ 454\\ 466 \end{array}$
14.6. EBI NAND Flash Read Timing 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/column Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI EBL ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Interactions in Prioritized Order 16.6. I ² C Master Transmitter 16.6. I ² C Graservecive 16.7. I ² C STATE Values 16.8. I ² C Transmission Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Paita Bits 17.3. USART Data Bits 17.4. USART Stop Bits 17.5. USART Paita Bits 17.6. USART Party Bits 17.6. USART Party Bits 17.7. USART Bat Rates @ 4MHz Peripheral Clock 17.8. USART SPI Modes 17.9. USART I2S Modes	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 424\\ 426\\ 428\\ 429\\ 432\\ 433\\ 434\\ 451\\ 452\\ 453\\ 451\\ 452\\ 453\\ 454\\ 466\\ 469\\ \end{array}$
14.6. EBI NAND Flash Read/Write Timing Requirements 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/cloum Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI Emro Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 1 ² C Reserved 1 ² C Addresses 16.1. 16.2. 16.3. 16.4. 1 ² C Reserved 1 ² C Addresses 16.3. 16.4. 1 ² C Reserved 1 ² C Addresses 16.2. 16.3. 1 ² C Reserved 1 ² C Addresses 16.4. 16.1. 16.2. 17.4. 16.3. 1 ² C Clock Mode 16.4. 1 ² C Naster Transmitter 16.5. 16.6. 1 ² C Master Receiver 16.8. 16.8. 1 ² C Slave Transmitter 16.9. 16.10. 1 ² C Slave Receiver 16.11. 16.12. 16.13.	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 424\\ 426\\ 428\\ 429\\ 432\\ 433\\ 451\\ 451\\ 452\\ 453\\ 451\\ 452\\ 453\\ 454\\ 466\\ 469\\ 474 \end{array}$
14.6. EBI NAND Flash Read/Write Timing Requirements 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/cloum Parity 14.9. EBI ECC Byte/Row Parity 14.10. EBI Emror Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1 ¹ C Reserved ¹ C Addresses 16.2. ¹ C High and Low Periods for Low CLKDIV 16.3. ¹ C Clock Mode 16.4. ¹ C Interactions in Prioritized Order 16.5. ¹ C Master Transmitter 16.6. ¹ C Cock Mode 16.7 ² C Baster Transmitter 16.8. ¹ C Interactions in Prioritized Order 16.8. ¹ C Cock Mode 16.7 ¹ C Stayte Transmitter 16.8. ¹ C Cock Mode 16.7 ¹ C Stayte Transmitter 16.8. ¹ C Interactions in Prioritized Order 16.8. ¹ C Transmission Status 16.8. ¹ C Stayte Transmitter 16.10. ¹ C - Slave Receiver 16.11. ¹ C Bus Error Response 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Tata Bits 17.4. USART Tata Bits 17.4. USART Tata Bits 17.4. USART Baud Rates @ 4MHz Peripheral Clock 17.4. USART	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 424\\ 426\\ 428\\ 429\\ 432\\ 433\\ 451\\ 451\\ 452\\ 453\\ 454\\ 466\\ 469\\ 474\\ 496\\ 474\\ 496\\ 406\\ 406\\ 474\\ 496\\ 406\\ 406\\ 406\\ 406\\ 406\\ 406\\ 406\\ 40$
14.6. EBI NAND Flash Read Write Timing Requirements 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Cloum Parity 14.9. EBI ECC Bit/Cloum Parity 14.10. EBI EBL_ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C High and Low Periods for Low CLKDIV 16.3. I ² C Clock Mode 16.4. I ² C Master Transmitter 16.5. I ² C Master Receiver 16.6. I ² C Master Receiver 16.7. I ² C Slave Transmitter 16.8. I ² C Transmision Status 16.9. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Bus Error Response 17.1. USART Paynchronous vs. Synchronous Mode 17.2. USART Pin Usage 17.3. USART Data Bits 17.4. USART SPI Modes 17.5. USART Parity Bits 17.6. USART Parity Bits 17.7. USART SPI Modes	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 426\\ 428\\ 429\\ 432\\ 433\\ 451\\ 452\\ 453\\ 451\\ 452\\ 453\\ 454\\ 466\\ 469\\ 474\\ 496\\ 966\\ 696\\ 696\\ 696\\ 696\\ 696\\ 69$
14.6. EBI NAND Flash Read/Write Timing Requirements 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Bit/Column Parity 14.10. EBI EBL ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 16.1. I ² C Reserved I ² C Addresses 16.2. I ² C Reserved I ² C Addresses 16.3. I ² C Reserved I ² C Addresses 16.4. I ² C Interactions in Prioritized Order 16.4. I ² C Interactions in Prioritized Order 16.6. I ² C Master Transmitter 16.6. I ² C Master Receiver 16.7. I ² C Slave Transmitter 16.8. I ² C Slave Transmitter 16.8. I ² C Slave Transmitter 16.8. I ² C Slave Transmitter 16.10. I ² C - Slave Receiver 16.11. I ² C Buse Transmitter 16.11. I ² C Buse Transmitter 16.12. I ² C Arats Supportse 17.1. USART Asynchronous vs. Synchronous Mode 17.2. USART Toata Bits IIIIIIIIIIIII	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 421\\ 426\\ 428\\ 429\\ 432\\ 433\\ 451\\ 451\\ 452\\ 453\\ 454\\ 466\\ 469\\ 474\\ 496\\ 499\\ 502\end{array}$
14.6. EBI NAND Flash Read/Write Timing Requirements 14.7. EBI NAND Flash Read/Write Timing Requirements 14.8. EBI ECC Bit/Column Parity 14.9. EBI ECC Bit/Column Parity 14.10. EBI EBL ECCPARITY valid bits 14.11. EBI Error Detection Result 15.1. Host Programming Operations 15.2. 15.3. 15.4. 15.5. 16.1. I ^C C Reserved I ^C C Addresses 16.1. I ^C C Reserved I ^C C Addresses 16.2. 16.3. 16.4. 16.4. 16.7 C Reserved I ^C C Addresses 16.2. 16.3. 16.4. 16.4. 16.4. 16.6. 1 ^C C Master Transmitter 16.6. 16.7. 17.4. STATE Values 16.8. 16.9. 17.4. USART Asynchronous vs. Synchronous Mode 17.1. 17.1. 17.2. 18.4.7.2. 19.4.7. 19.4.7. 17.4. 16.1.1 ^C C Bus Error Response 17.1.	$\begin{array}{c} 196\\ 198\\ 198\\ 199\\ 259\\ 288\\ 332\\ 333\\ 418\\ 420\\ 424\\ 426\\ 429\\ 432\\ 433\\ 451\\ 452\\ 453\\ 456\\ 469\\ 474\\ 496\\ 499\\ 5029\\ 529\end{array}$